• Title/Summary/Keyword: 니켈 스탬퍼

Search Result 8, Processing Time 0.02 seconds

A study on the duplication of nickel stamper using circular paraboloid AAO nano-patterned master for anti-reflection effect (무반사 효과를 위한 회전포물체 나노패턴 양극산화 마스터를 이용한 니켈스탬퍼 제작에 관한 연구)

  • Kim, Min-Gu;Hong, Seok-Gwan;Park, Chun-Man;Gwak, Mun-Gyu;Kim, Hyeon-Jong;Yun, Gyeong-Hwan;Gang, Jeong-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.158-159
    • /
    • 2014
  • 무반사 효과를 보이는 나방눈을 관찰해보면 눈 표면에 회전포물체 형상 나노패턴이 형성된 것을 확인할 수 있다. 본 논문에서는 회전포물체 형상 AAO를 제작하였으며 이 마스터를 이용해 전주공정으로 니켈스탬퍼를 제작하였다. 제작된 father, mother 니켈스탬퍼 윗면의 나노패턴 형상을 FE-SEM(Field Emission Scanning Electron Microscope)으로 확인하였다.

  • PDF

Technology to Fabricate PMMA Light Guiding Plate with Pillar Type Nano Pattern Using Nano Impinrinting Technology (나노 임프린팅 기술에 의한 원기둥형 나노 패턴의 PMMA 도광판 형성 기술)

  • Lee, B.W.;Lee, T.S.;Lee, J.H.;Lee, K.W.;Jung, J.H.;Hong, C.;Kim, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.156-157
    • /
    • 2007
  • 나노임프린팅 기술을 이용하여 원기둥형 나노 패턴을 갖는 도광판을 제작하였다. 나노 임프린트 공정을 이용하기 위해서는 니켈 스탬퍼가 필요하기 때문에 이를 제작하기 위하여 실리콘 웨이퍼 상에 건식식각을 이용하여 실리콘 몰드를 제작하였다. 제작된 실리콘 몰드를 전주도금을 이용하여 니켈 스탬퍼를 제작하였다. 제작된 니켈 스탬퍼를 사용한 나노임프린트 공정을 통해 원기둥 나노패턴을 갖는 도광판을 제작하였다.

  • PDF

A Study on the Fabrication of Ni Stamper for 50nm Class of Patterns (50nm급 패턴 니켈 스탬퍼 제작에 관한 연구)

  • Yoo, Yeong-Eun;Oh, Seung-Hun;Lee, Kwan-Hee;Kim, Seon-Gyeong;Youn, Jae-Sung;Choi, Doo-Sun
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.35-38
    • /
    • 2008
  • A pattern master and a Ni stamper for 50nm class of patterns are fabricated through e-beam lithography and Ni electroforming process. A model pattern set is designed, which is based on unit patterns of 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The e-beam process is optimized to fabricate designed patterns with some parameters including dose, accelerating voltage, focal distance and developing time. For Ni electroforming to fabricate Ni stamper, a seed layer, a conducting layer, is deposited first on the pattern master fabricated by an e-beam lithography process. Ni, Ti/Ni and Cr are first tested to find optimal seed layer process. Currently the best result is obtained when adopting Cr deposited to be 100nm thick with continuous tilting motion of the master substrate during the deposition process.

  • PDF

Fabrication of High Aspect Ratio 100nm-Scale Nickel Stamper Using E-Beam Writing based on Chrome/Quartz Mask Without Anti-Reflection Layer for Injection Molding of Optical Grating Patterns (광학 그레이팅의 사출성형제작을 위한 전자빔과 무반사 코팅층이 없는 크롬/퀄츠 마스크를 이용한 고종횡비 100nm 급 니켈 스탬퍼의 제작)

  • Seo, Young-Ho;Choi, Doo-Sun;Lee, Joon-Hyoung;Je, Tae-Jin;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1794-1798
    • /
    • 2004
  • We present a fabrication method of high aspect ratio 100nm-scale nickel stamper using e-beam writing for the injection molding of optical grating patterns. Conventional nickel stamper is fabricated by nickel electroplating process which is followed by seed layer deposition. In this paper, we have used chrome coated blank mask without anti-reflection layer of CrON in order to simplified electroplating process. In experimental study, we have optimized electron-beam dosage for 100nm-scale optical grating patterns with 2.5-aspect ratio, and fabricated nickel stamper using above grating patterns as PR mold. Fabricated nickel stamper have showed height of 240$\pm$20nm and width of 116$\pm$6nm.

A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide (Anodic Aluminum Oxide 기반 니켈 스탬퍼를 이용한 나노패턴 성형에 관한 연구)

  • Kim, S.;Kim, J.S.;Hong, S.K.;Kim, H.J.;Yoon, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • For the fabrication of nano patterned products manufacturing a nano patterned mold is needed in advance. The nano patterned stamper was fabricated by electroforming the AAO master with nickel. The surface of nickel-plated stamper had nano-patterned holes with the diameter of 73 nm and the depth of 83 nm. Hot embossing was used for forming P3HT sheet and the process factors of hot embossing were closer as pressure, temperature and time. In the present paper hot embossing experiments were performed to find the main process conditions to affect the replication ratio of nano patterns on surface of P3HT sheet. As a result, main contributing factors for the replication ratio of hot embossed pattern could be sequentially enumerated as pressure, temperature and time.

Fabrication of High Aspect Ratio 100nm-scale Nickel Stamper Using E-beam Lithography for the Injection molding of Nano Grating Patterns (전자빔과 무반사층이 없는 크롬 마스크를 이용한 나노그레이팅 사출성형용 고종횡비 100nm 급 니켈 스템퍼의 제작)

  • Seo, Young-Ho;Choi, Doo-Sun;Lee, Joon-Hyoung;Je, Tae-Jin;Whang, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.978-982
    • /
    • 2004
  • We present high aspect ratio 100nm-scale nickel stamper using e-beam lithography process and Cr/Qz mask for the injection molding process of nano grating patterns. Conventional photolithography blank mask (CrON/Cr/Qz) consists of quartz substrate, Cr layer of UV protection and CrON of anti-reflection layer. We have used Cr/Qz blank mask without anti-reflection layer of CrON which is non-conductive material and ebeam lithography process in order to simplify the nickel electroplating process. In nickel electroplating process, we have used Cr layer of UV protection as seed layer of nickel electroplating. Fabrication conditions of photolithography mask using e-beam lithography are optimized with respect to CrON/Cr/Qz blank mask. In this paper, we have optimized e-beam lithography process using Cr/Qz blank mask and fabricated nickel stamper using Cr seed layer. CrON/Cr/Qz blank mask and Cr/Qz blank mask require optimal e-beam dosage of $10.0{\mu}C/cm^2$ and $8.5{\mu}C/cm^2$, respectively. Finally, we have fabricated $116nm{\pm}6nm-width$ and $240nm{\pm}20nm-height$ nickel grating stamper for the injection molding pattern.

  • PDF

Fabrication of Ni Stamper based on Micro-Pyramid Structures for High Uniformity Light Guide Panel (LGP) (마이크로 피라미드 패턴 응용 도광판 제작을 위한 니켈 스탬퍼 제작에 관한 연구)

  • Kim, Seong-Kon;Yoo, Yeong-Eun;Seo, Young-Ho;Jae, Tae-Jin;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.174-178
    • /
    • 2006
  • Pyramid shape of micro pattern is applied to the light guide panel (LGP) to enhance the uniformity of the brightness of the LCD. The micro pyramids are molded in intaglio on the surface of the LGP. The size of each pyramid is 5$\mu$m $\times$ 5$\mu$m on bottom and the height is about 3.5$\mu$m. The pyramids are distributed on the LGP surface randomly to be sparser where the light comes in and denser at the opposite side as a result of a simulation using lightools$^{TM}$ Based on this design, a silicon pattern master and a nickel stamper are fabricated by MEMS process and electro plating process. Intaglio micro pyramids are fabricated on the 6' of silicon wafer from the anisotropic etching using KOH and the process time, temperature of the KOH solution, etc are optimized to obtain precise shape of the pattern. A Wi stamper is fabricated from this pattern master by electro plating process and the embossed pyramid patterns turns out to be well defined on the stamper. Adopting this stamper to the mold base with two cavities, 1.8' and 3.6' LGPs are injection molded.

Fabrication and transcription estimation of prismless LGP for cellular phone using E-Mold technology (전열가열방식을 이용한 휴대전화용 복합기능 도광판 제작 및 전사성 평가)

  • Kim, Young-Kyun;Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.186-193
    • /
    • 2009
  • In this paper, we adopted E-MOLD patent technology in order to fabricate Prismless LGP(Light Guide Panel) fur cellular phone and estimate the transcription of injection-molded parts. Then, we manufactured the Ni stamper fur Prismless LGP using MEMS process. And the stamper was installed in the movable heated core which is the key part of a patented mold. Using this mold, we manufactured injection-molded plastic LGP parts with different mold temperatures so that we investigate effect of the temperature on the transcription of the parts. The CAE analysis was also conducted in order to compare with the experimental results. The transcription of LGP parts with various mold temperature displayed $100^{\circ}C$(25.0nm), $140^{\circ}C$(48.4nm), $180^{\circ}C$(52.1nm) and when compared with stamper(521Inm), transcription was superior at $180^{\circ}C$. According to the CAE results, moldability was improved as mold temperature ($50^{\circ}C{\sim}180^{\circ}C$) increased, but when filling time($1{\sim}2sec$) increases, it decreased at $160^{\circ}C$. And transcription and moldability were improved markedly at glass transition temperature($140^{\circ}C$).