• Title/Summary/Keyword: 니켈기합금

Search Result 4, Processing Time 0.024 seconds

Environmentally-Assisted Cracking of Austenitic Alloys in a PWR Environment (PWR 환경에서의 오스테나이트계 합금의 환경조장균열)

  • Hong, Jong-Dae;Jang, Hun;Jang, Changheui
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • Austenitic stainless steels and Ni-base alloys are widely used as structural materials for major components and piping system in pressurized water reactors (PWRs). These austenitic alloys are known to be susceptible to environmental assisted cracking (EAC), such as environmentally-assisted fatigue (EAF) and primary water stress corrosion cracking (PWSCC) during long-term exposure to PWR primary water environment. In this paper, the current understanding on the phenomena and mechanisms of these EAC are briefly introduced using experimental results and literature review. The mechanisms for EAF and PWSCC for austenitic stainless steels and Ni-base alloys are discussed. Currently, austenitic stainless steels are known to be more susceptible to EAF, while less susceptible to PWSCC than Ni-base alloys. The possible explanations to such behaviors are proposed and discussed in view of the role of hydrogen and internal oxidation.

A Round-Robin Analysis of Temperature and Residual Stresses in Dissimilar Metal Weld (이종금속용접부 온도 및 잔류응력의 라운드로빈 해석)

  • Song, Min-Sup;Kang, Sun-Ye;Park, June-Soo;Sohn, Gap-Heon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.85-87
    • /
    • 2008
  • DMWs are common feature of the PWR in the welded connections between carbon steel and stainless steel piping. The nickel-based weld metal, Alloy 82/182, is used for welding the dissimilar metals and is known to be susceptible to PWSCC. A round-robin program has been implemented to benchmark the numerical simulation of the transient temperature and weld residual stresses in the DMWs. To solve the round-robin problem related to Pressurizer Safety & Relief nozzle, the thermal elasto-plastic analysis is performed in the DMW by using the FEM. The welding includes both the DMW of the nozzle to safe-end and the SMW of the safe-end and piping. Major results of the analyses are discussed: The axial and circumferential residual stresses are found to be -88MPa(225MPa) and -38MPa(293MPa) on the inner surface of the DMW; where the values in parenthesis are the residual stresses after the DMW. Thermo-mechanical interaction by the SMW has a significant effect on the residual stress fields in the DMW.

  • PDF

Review on Delayed Hydride Cracking and Stress Corrosion Cracking of Metals (합금속의 수소취성과 응력부식균열 고찰)

  • Kim, Young Suk;Cheong, Yong Moo;Im, Kyung Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.266-273
    • /
    • 2004
  • The objective of this study is an understanding of stress corrosion cracking of metals that is recognized to mostly limit the lifetime of the structural materials by comparing the features of delayed hydride cracking of zirconium alloys with those of stress corrosion cracking (SCC) of Ni-based alloys and hydrogen cracking of stainless steels. To this end, we investigated a dependence of delayed hydride cracking (DHC) velocity on the applied stress intensity factor and yield strength, and correlated a temperature dependence of the striation spacing and the DHC velocity. We reviewed a similarity of the features between the DHC of zirconium alloys, the SCC of Ni-based alloys and turbine rotor steels, and the hydrogen cracking of stainless steels and discussed the SCC phenomenon in metals with our DHC mode.

Investigation on Effect of Distance Between Two Collinear Circumferential Surface Cracks on Primary Water Stress Corrosion Crack Growth in Alloy 600TT Steam Generator Tubes (Alloy 600TT 증기발생기 전열관내 일렬 원주방향 표면 일차수응력 부식균열 성장에 미치는 균열 간격의 영향 고찰)

  • Heo, Eun-Ju;Kim, Jong-Sung;Jeon, Jun-Young;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.269-273
    • /
    • 2015
  • The study investigated the effect of the distance between two collinear circumferential surface cracks on the primary stress corrosion crack (PWSCC) growth in alloy 600TT steam generator tubes using a finite element damage analysis based on the PWSCC initiation model and macroscopic phenomenological damage mechanics approach. The damage analysis method was verified by comparing the results to the previous study results. The verified method was applied to collinear circumferential surface PWSCCs. As a result, it was found that the collinear cracks showed earlier coalescence and penetration times than the a single crack, and the times increased with the distance. In addition, it is expected that penetration may occur before coalescence of two cracks if they are more than a specific distance apart.