• Title/Summary/Keyword: 니들

Search Result 133, Processing Time 0.021 seconds

Purchase Transaction Similarity Measure Considering Product Taxonomy (상품 분류 체계를 고려한 구매이력 유사도 측정 기법)

  • Yang, Yu-Jeong;Lee, Ki Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.363-372
    • /
    • 2019
  • A sequence refers to data in which the order exists on the two items, and purchase transaction data in which the products purchased by one customer are listed is one of the representative sequence data. In general, all goods have a product taxonomy, such as category/ sub-category/ sub-sub category, and if they are similar to each other, they are classified into the same category according to their characteristics. Therefore, in this paper, we not only consider the purchase order of products to compare two purchase transaction sequences, but also calculate their similarity by giving a higher score if they are in the same category in spite of their difference. Especially, in order to choose the best similarity measure that directly affects the calculation performance of the purchase transaction sequences, we have compared the performance of three representative similarity measures, the Levenshtein distance, dynamic time warping distance, and the Needleman-Wunsch similarity. We have extended the existing methods to take into account the product taxonomy. For conventional similarity measures, the comparison of goods in two sequences is calculated by simply assigning a value of 0 or 1 according to whether or not the product is matched. However, the proposed method is subdivided to have a value between 0 and 1 using the product taxonomy tree to give a different degree of relevance between the two products, even if they are different products. Through experiments, we have confirmed that the proposed method was measured the similarity more accurately than the previous method. Furthermore, we have confirmed that dynamic time warping distance was the most suitable measure because it considered the degree of association of the product in the sequence and showed good performance for two sequences with different lengths.

Application and Adequacy Evaluation of Mobile Sewage Treatment Facilities for Concrete Wastewater Treatment Generated during Construction (공사 중 발생되는 콘크리트 폐수처리를 위한 이동식 오수처리 시설의 적용 및 적정성 평가)

  • Wooseok Jeong;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.91-98
    • /
    • 2023
  • Some concrete wastewater generated during construction is in the form of non-point pollution sources that workers, managers, and users are unaware of, and it is not easy to manage as it flows through sewage pipes. Due to these characteristics, construction sludge is inflow into rivers and sewage pipes in the form of non-point pollution sources in an unmanaged state. This study applied the D.W.S method to the concrete retaining wall removal method installed on the road, and the resulting concrete wastewater was physically and chemically treated through a mobile sewage treatment facility, and it was examined whether it met the removal efficiency and wastewater discharge acceptance standards. Accordingly, it is intended to meet the standards for effluent concentration of wastewater during construction by removing 73.5% of BOD and 89.1% of SS through physical and chemical treatment through portable sewage treatment facilities during construction. In addition, we would like to review the adequacy and economic analysis of calculating environmental conservation costs for physicochemical treatment through portable sewage treatment facilities and sewage treatment generated during construction.

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.