• Title/Summary/Keyword: 능동 현가장치 제어

Search Result 86, Processing Time 0.023 seconds

Dynamic Behaviour Analysis of a Hydraulic Control System for Vehicle Active Suspension (차량 능동현가장치용 유압 제어시스템의 동적거동 해석)

  • Jung, Y.G.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • Active suspension systems have been using for improving ride quality and stability for vehicles. An active suspension system is composed of a hydraulic pump, pressure control valves, hydraulic dampers, vehicle body, tires and other components. In this study, the mathematical model for the active suspension system based on the quarter car concept is derived, and a program for analysing the dynamic behaviour of the suspension system is developed. The computed results by the developed program are compared with the experimental results for confirming the reliability and usefulness of the developed program.

  • PDF

ANFIS Intelligence Control of a Semi-Active Suspension System (반능동 현가장치의 ANFIS 지능제어)

  • 이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, ANFIS intelligence control of a semi-active suspension system is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFlS control method. Computer simulation results show that the semi-active suspension with ERF damper has good performances of ride quality

  • PDF

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

Design of Rollover Prevention Controller Using Game-Theoretic Approach (미분게임 이론을 이용한 차량 전복 방지 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1429-1436
    • /
    • 2013
  • This study presents an approach for designing a vehicle rollover prevention controller using differential game theory and multi-level programming. The rollover prevention problem can be modeled as a non-cooperative zero-sum two-player differential game. A controller as an equilibrium solution of the differential game guarantees the worst-case performance against every possible steering input. To obtain an equilibrium solution to the differential game with a small amount of computational effort, a multi-level programming approach with a relaxation procedure is used. To cope with the loss of maneuverability caused by the active suspension, an electronic stability program (ESP) is adopted. Through simulations, the proposed method is shown to be effective in obtaining an equilibrium solution of the differential game.

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.822-829
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

Modal Sky-Hook Dampers for Active Suspension Control (능동형 현가시스템을 위한 모드 SKY-HOOK 감쇠 제어기)

  • 곽병학;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • Active suspension control for vehicles is developed to improve both ride comfort and steering stability which are in trade off relation. In this study, the modal sky-hook controller for 7 D. O. F. model is proposed to resolve the problems such as computaional power restriction and uncertainties in modeling of systems and environments. Modal sky-hook controller reduces the coupling between the modes to be controlled. The simulation result for ride comfort shows that the perform ance of the proposed controller matches that of the optimal controller. Systematic method of determining its gain is proposed. The model sky-hook controller shows the robustness to road irregularity and modeling error.

  • PDF

A Study on Active Suspension system Using Time Delay Control (시간지연 제어기법을 이용한 능동 현가시스템에 관한 연구)

  • Xuan, Dong-Ji;Kim, Jin-Wan;Zhang, Jing-Yi;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1219-1224
    • /
    • 2007
  • This is Presents experimental results of a force tracking controller for a quarter-car suspension system. The active suspension system was decomposed into two loops. At the main loop, the desired force signal is calculate by using a standard LQ design process. The Time Delay Control(TDC) design technique is then used to design the force controller such that the desired force signal is achieved in a robust manner when actuator or other plant uncertainties are present. The ADAMS controls module was used to realize the joint simulation of ADAMS and MATLAB, of which the results showed that the TDC strategy is reasonable and feasible.

  • PDF