• Title/Summary/Keyword: 능동 집적 안테나

Search Result 16, Processing Time 0.02 seconds

A Reconfigurable Active Array Antenna System with Reconfigurable Power Amplifiers Based on MEMS Switches (MEMS 스위치 기반 재구성 고출력 증폭기를 갖는 재구성 능동 배열 안테나 시스템)

  • Myoung, Seong-Sik;Eom, Soon-Young;Jeon, Soon-Ik;Yook, Jong-Gwan;Wu, Terence;Lim, Kyu-Tae;Laskar, Joy
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.381-391
    • /
    • 2010
  • In this paper, a novel frequency reconfigurable active array antenna(RAA) system, which can be reconfigurable for three reconfigurable frequency bands, is proposed by using commercial RF MEMS switches. The MEMS switch shows excellent insertion loss, linearity, as well as isolation. So, the system performance degradation of the reconfigurable system by using MEMS switches can be minimized. The proposed frequency reconfigurable active antenna system is consisted with the noble frequency reconfigurable front-end amplifiers(RFA) with the simple reconfigurable impedance matching circuits(RMC), reconfigurable antenna elements(RAE), as well as a reconfiguration control board(RCB) for MEMS switch control. The proposed RAA system can be reconfigurable for three frequency bands, 850 MHz, 1.9 GHz, and 3.4 GHz, with $2{\times}2$ array of the RAE having broadband printed dipole antenna topology. The validity of the proposed RFA as well as RAA is also presented with the experimental results of the fabricated systems.

Fabrication of the Capacitance Controlled Active Integrated Phased Array Antenna and It's Scanning Characteristics (용량 조정형 능동 집적 배열 안테나의 제작과 방사 방향 주사 특성)

  • Choi, Young-Kyu;Nam, Beong-Geun;Shin, Sang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1807-1813
    • /
    • 2007
  • This paper deals with extending the variable natural oscillation frequency range of an active integrated FET oscillator. In this paper, we conform experimentally that the variable range of the natural oscillation frequency is expanded about three times in the oscillator controlled by the varactor diode. When the frequency difference is given to the oscillators in the two element antenna system, phase difference appeared between the oscillators. The 2-, 3-, 4-, 5-element patch antenna arrays are composed for the beam scanning experiments. All the above patch antennas show good phased array characteristics. The range of the scanning angle is about $30^{\circ}$, and the radiation power is gradually increased from $50{\mu}W\;to\;200{\mu}W$. The radiation patterns we sharpened as the number of elements is increased.

The Design and Fabrication of X-Band MMIC Low Noise Amplifier for Active antennal using P-HEMT (P-HEMT를 이용한 능동 안테나용 X-Band MMIC 저잡음 증폭기 설계 및 제작)

  • 강동민;맹성재;김남영;이진희;박병선;윤형섭;박철순;윤경식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.506-514
    • /
    • 1998
  • The design and fabrication of X-band(11.7~12 GHz) 2-stage monolithic microwave integrated circuit(MMIC) low noise amplifier (LNA) for active antenna are presented using $0.15{\mu}m\times140{\mu}m$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT). In each stage of the LNA, a series feedback by using a source inductor is used for both input matching and good stability. The measurement results are achieved as an input return loss under -17 dB, an output return loss under -15dB, a noise figure of 1.3dB, and a gain of 17 dB at X-band. This results almost concur with a design results except noise figure(NF). The chip size of the MMIC LNA is $1.43\times1.27$.

  • PDF

Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

  • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.467-478
    • /
    • 2019
  • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.

Design of the Dual Receiving Channel T/R Module for the Next Generation SAR Payload (차세대 SAR 탑재체를 위한 이중 수신 채널 T/R 모듈 설계)

  • Won, Young-Jin;Youn, Young-Su;Woo, Sung-Hyun;Yoon, Jae-Cheol;Keum, Jung-Hoon;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • This paper describes the transmit/receive(T/R) module for the space based X-band active phased array radar. T/R module is the integrated module which is assembled by the transmitting and receiving RF semiconductor devices to enable the electronically beam steering of the phased array antenna and the key component of the SAR payload. T/R module can selectively receive the polarization signals by the switch according to the established technology but now the technological trend of the T/R module is to receive the horizontal and vertical polarization signal simultaneously. Therefore the research and development of the dual polarization receiving channel T/R module is actively in progress. In this study, as the prior research for the next generation SAR payload, the technological trend of the active phased array radar T/R module and the result of the preliminary design of the dual receiving channel T/R module were described.

Implantable Flexible Sensor for Telemetrical Real-Time Blood Pressure Monitoring using Polymer/Metal Multilayer Processing Technique (폴리머/ 금속 다층 공정 기술을 이용한 실시간 혈압 모니터링을 위한 유연한 생체 삽입형 센서)

  • Lim Chang-Hyun;Kim Yong-Jun;Yoon Young-Ro;Yoon Hyoung-Ro;Shin Tae-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.599-604
    • /
    • 2004
  • Implantable flexible sensor using polymer/metal multilayer processing technique for telemetrical real-time blood pressure monitoring is presented. The realized sensor is mechanically flexible, which can be less invasively implanted and attached on the outside of blood vessel to monitor the variation of blood pressure. Therefore, unlike conventional detecting methods which install sensor on the inside of vessel, the suggested monitoring method can monitor the relative blood pressure without injuring blood vessel. The major factor of sudden death of adults is a disease of artery like angina pectoris and myocardial infarction. A disease of circulatory system resulted from vessel occlusion by plaque can be preventable and treatable early through continuous blood pressure monitoring. The procedure of suggested new method for monitoring variation of blood pressure is as follows. First, integrated sensor is attached to the outer wall of blood vessel. Second, it detects mechanical contraction and expansion of blood vessel. And then, reader antenna recognizes it using telemetrical method as the relative variation of blood pressure. There are not any active devices in the sensor system; therefore, the transmission of energy and signal depends on the principle of mutual inductance between internal antenna of LC resonator and external antenna of reader. To confirm the feasibility of the sensing mechanism, in vitro experiment using silicone rubber tubing and blood is practiced. First of all, pressure is applied to the silicone tubing which is filled by blood. Then the shift of resonant frequency with the change of applied pressure is measured. The frequency of 2.4 MHz is varied while the applied pressure is changed from 0 to 213.3 kPa. Therefore, the sensitivity of implantable blood pressure is 11.25 kHz/kPa.