• Title/Summary/Keyword: 능동 소음 감쇠

Search Result 48, Processing Time 0.023 seconds

Intelligent Control of Structural Vibration Using Active Mass Damper (능동질량감쇠기를 이용한 구조물 진동의 지능제어)

  • Kim, Dong-Hyawn;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.286-290
    • /
    • 2000
  • Optimal neuro-control algorithm is extended to the control of a multi-degree-of-freedom structure. An active mass driver(AMD) system on the top roof is used as an exciter. The control signals are made by a multi-layer perceptron(MLP) which is trained by minimizing a sub-optimal performance index. The performance index is a function of both the output responses and the control signals. Structure having nonlinear hysteretic behavior is also trained and controlled by using proposed control algorithm. In training neuro-controller, emulator neural network is not used. Instead, sensitivity-test data are used. Therefore, only one neural network is used for the control system. Both the time delay effect and the dynamics of hydraulic actuator are included in the simulation. Example shows that optimal neuro-control algorithm can be applicable to the multi-degree of freedom structures.

  • PDF

Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model (역모델을 이용한 MR 댐퍼의 감쇠계수 제어)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

Hybrid Damping Treatment for Vibration control of an Automotive Roof using Viscoelastic and Piezoelectric material (하이브리드 방법을 이용한 자동차 루프의 진동제어)

  • Na, Jung-Kee;Moon, Sung-Jin;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.994-998
    • /
    • 2004
  • Hybrid method is used to suppress vibration of an automotive roof surface. The hybrid method proposed in this paper is implemented experimentally using both viscoelastic and piezoelectric material. The piezoelectric material is used to control the vibration of automotive structure for lower range of frequencies and the experiment of vibration control using viscoelastic material has been carried out suppress vibrations of high frequency range mark. At first the plate controlled by using hybrid method has been .implemented to verify the performance for suppressing vibration. Then the experiment has been applied to the automotive roof structure.

  • PDF

Excitation System for Simulating Wind-induced Responses of a Building Structure using an Active Tuned Mass Damper (ATMD를 이용한 건축 구조물의 풍응답 구현을 위한 가진시스템)

  • Park, Eun-Churn;Lee, Sang-Hyun;Min, Kyung-Won;Kang, Kyung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.210-215
    • /
    • 2007
  • In this paper, excitation systems using an active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

Vibration Control of Flexible Rotor Systems Using an Electro-rheological Fluid Damper (ER 유체 감쇠기를 이용한 유연 회전축 계의 진동제어)

  • Lim, Seung-Chul;Chae, Jeong-Jae;Park, Sang-Min;Yun, Eun-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.365-373
    • /
    • 2002
  • This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.

Optimal Design of Passive Viscoelastic Dampers Having Active Control Effect for Building Structures (건물 구조물을 위한 능동 제어 효과를 가지는 수동 점성감쇠기의 최적 설계)

  • 황재승;민경원;홍성목
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.225-234
    • /
    • 1995
  • In this study, first, transformation process of damping ratios, whose are evaluated in active control analysis, into damping matrix resulting from installed viscous dampers is illustrated. Then, a method is followed to maximize the effect of response reduction, which leads to optimum locations and size of viscous dampers using sensitivity analysis. Highly coupled nonlinearity between damping ratios and dampers makes it hard to find the optimal size of dampers. Therefore, the nonlinearity is transformed to linear problem with small increments of damping ratios and the size of dampers can be found. However, there are many cases for the size of dampers satisfying the small increment of damping ratios, so it is necessary to select minimum size using optimization technique. To determine optimum locations of dampers, dampers are assumed to be installed between the different stories and their locations are selected corresponding corresponding to the degree of damping size. Numerical examples for the frame structure and the shear wall structure show that optimum locations and size of dampers are different form each other depending on the characteristics of modal responses of the structures. The proposed method in this study can be applied to get optimum locations of active controller in the active control.

  • PDF

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

Enhancement of SNUF Active Trailing-edge Flap Blade Mechanism Design (SNUF뒷전 플랩 블레이드 메커니즘의 설계 개선)

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.645-653
    • /
    • 2013
  • Seoul National University flap(SNUF) blade is a small-scale rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and geometrically exact one-dimensional beam analysis, and its material configuration was finalized. A flap-deflection angle of ${\pm}4^{\circ}$ was established as the criterion for enhanced vibration reduction based on an earlier simulation. The flap-linkage mechanism was designed and static bench tests were conducted for verifying the performance of the flap-actuation mechanism. Different versions of test beds were developed and tested with the designed flap and the selected APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High-frequency experiments were conducted for evaluating the performance, and the transfer function of the test bed was determined experimentally. With the static tests almost complete, the rotor power required for testing the blade in a whirl tower (centrifugal environment) was calculated, and further preparations are underway.