• 제목/요약/키워드: 능동형 자기 베어링

검색결과 38건 처리시간 0.021초

전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석 (Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

소형 원판형 하이브리드 자기 부상 모터 (A Small Disk-type Hybrid Self-healing Motor)

  • 김승종
    • 한국소음진동공학회논문집
    • /
    • 제11권8호
    • /
    • pp.338-348
    • /
    • 2001
  • A hybrid self-hearing motor, which Is a functional combination of general permanent magnet (PM) motor and hybrid active magnetic bearing(AMB), was proposed a few years ago. In this paper the hybrid self-bearing motor is modified to a disk type, in which one of two magnetic hearings was substituted for a thin yoke to make the system more compact. An outer rotors in this self-hearing motor is actively controlled only in two radial directions while the ocher motions are passively salable owing to the disk-type structure. Main advantages of the proposed self-hearing motor are simple control mechanism, low power consumption and smart structure. Mathematical model for the magnetic force Is built wish consideration of the radial displacement of the rotor. The model helps us not only to design a levitation controller but also to expect the system performance. Some experimental results show good capability and feasibility of the Proposed self-bearing motor.

  • PDF

부상용 2극과 회전용 4극 자속 분포를 갖는 로렌쯔형 자기 부상 모터 (Lorentz Force Type Self-Bearing Motor with 2-Pole Flux Distribution for Levitation and 4-Pole for Rotation)

  • 김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.482-487
    • /
    • 2001
  • This paper introduces a Lorentz force type four-pole self-bearing motor, where the new pole arrangement of a stator is intended to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as linearity of control force, freedom from flux saturation, and high efficiency unlike conventional self-bearing motors. Mathematical expressions of torque and radial force are derived to show that they can be separately controlled regardless of rotational speed and time. To verify the proposed theory, a prototype is made, where a ring-shape outer is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments, it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

  • PDF

소형 수직형 축류 펌프를 위한 축방향 자기 부상 모터 (An Axial-type Self-bearing Motor for Small Vertical Axial-flow Pump)

  • 김승종
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.223-232
    • /
    • 2001
  • Aiming at a small axial pump with a levitated rotor, an axial-type self-bearing motor is presented, which has a rotor wish four permanent magnets and two stators with two-pole three-phase windings. In this system, only the axial motion of rotor is actively controlled by two opposite self-bearing motors just like in the case of an axial magnetic bearing, while the other motions are passively stable. For rotation, It follows the theory of a four-pole three-phase synchronous motor. This paper Introduces schemes for design and control of the self-bearing motor and shows some experimental results to Prove the feasibility of application for the axial Pump.

  • PDF

능동형 자기베어링 시스템의 제어 (A Control of an Active Magnetic Bearing System)

  • 김종문;박민국;김석주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.75-78
    • /
    • 2003
  • In this paper, an active magnetic bearing-based motor-generator(M-G) system is designed and controlled using a digital PID control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. And some experiments are conducted with each global control and local control concept. From the whirl test, the M-G set can be controlled within about ${\pm}10{\mu}m$ gap variation at the rotational speed of 6000rpm.

  • PDF

능동형 자기 베어링 시스템의 설계 및 제어 (A Design and Control of an Active Magnetic Bearing System)

  • 김종문;최영규
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권2호
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

적분형 LQR 설계 기법을 이용한 능동자기베어링의 오버슈트 방지용 입력필터에 관한 연구 (A Study on the Prefilter to Protect Overshoot of Active Magnetic Bearing using Integral Type LQR-design Method)

  • 강성구;이기석;정준모;신우철;홍준희
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.1-7
    • /
    • 2007
  • Active magnetic bearing has been adopted to support the rotor by electomagnetic force without mechanical contact and lubrication process. A property of the control system for magnetic bearing is improved in accordance with making higher system gain. If the control system has integral part, an excessive overshoot response is shown by making higher integral gain. Therefore, this paper suggests a PID control system in order to eliminate the overshoot at the first stage and improve response characteristics to an impact disturbance at the status of levitation. The control gain was obtained by LQR design method which has the structure of I-PD control system in the state space. The PID control system containing prefilter has the same structure as the I-PD control system. Therefore, the PID control system adopted is able to be tuned by LQR design method. Finally, this paper shows the effect of the prefilter on the active magnetic bearing system through response experiments for levitation responses.

5kWh Flywheel 에너지저장장치 시스템의 동특성 향상 설계 (Design of 5kWh Flywheel Energy Storage System to Improve Dynamics)

  • 박철훈;최상규;함상용;이성휘;윤동원;한영희
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.99-106
    • /
    • 2008
  • 5kWh FESS(Flywheel Energy Storage System) using AMB(Active Magnetic Bearing) has been under development and 1st trial system has been finished and run the operating test. Unfortunately, the test result was not satisfactory because FESS could increase the rotational speed up to 9,000 rpm only although the target rotational speed is 18,000rpm. It's because 1st bending mode frequency of flywheel shaft was too low and imbalance response was too big. To achieve the target speed, 1st bending mode and imbalance response must be improved and the whole FESS needed to be designed again. This paper presents the newly designed FESS and what has been changed from the 1st trial FESS to improve 1st bending mode and imbalance response. The experimental results to see how much 1st bending mode frequency was improved are presented, too.