• Title/Summary/Keyword: 뉴턴유체

Search Result 63, Processing Time 0.021 seconds

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.

Comparison of Centrifugal Pump Performances for Newtonian and Non-Newtonian Fluids (뉴턴유체와 비뉴턴유체의 원심펌프성능특성 비교)

  • Kim, Dong-Joo;Roh, Hyung-Woon;Suh, Sang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-62
    • /
    • 2004
  • In the current study the effects on pump performances of a conventional centrifugal pump for Newtonian and non-Newtonian fluid were experimentally studied. The study aimed to compare the pump characteristics for Newtonian and non-Newtonian fluid. The working fluids are water, aqueous sugar solution, glycerin solution, muddy solution and pulp solution. The pump characteristics with high viscosity fluids were different. The operating efficiency for the sugar and glycerin solutions were decreased to $8.1\%$ and $12.9\%$ than that of water. The head reductions of the muddy solution for different concentration ratios were decreased to $7.97\%,\;15.11\%$ and $24.87\%$ than that of water And the head reductions of the pulp solution for different concentration ratios were decreased to $11.87\%,\;19.79\%$ md $36.81\%$ than that of water.

  • PDF

Pulsatile Flow characteristics of Non-Newtonian fluid in the Stenosed Tubes (협착관내 비뉴턴유체의 맥유동특성)

  • 유상신
    • The Korean Journal of Rheology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • 본 논문에서는 협착이 발생된 원관내 뉴턴유체와 비뉴턴유체의 정상 및 맥동유동특 서을 유한요소법으로 해석하였다. 본연구는 맥동유동특성에서 협착관 형상의 변화, 협착이 주기적으로 발생된 협착관에서 협착부사이의 거리와 협착부의 수가유동특성에 미치는 영향 을 검토하였다. 레이놀즈수가 일정할 때 협착이 발생된 원형관내 뉴턴유체와 비뉴턴유체의 맥동유동특성은 정상유동의 경우와 크게 다르게 나타난다. 맥동유동에서는 정상유동보다 관 중앙부에서 속도분포가 훨씬 평탄하고 맥동유동의 속도분포는 감속시에 비하여 가속시에 관 중앙부의 속도분포가 더 평탄하게 나타난다. 정상유동과 맥동유동으 감속시에서는 협착부 하류의 벽면에서 재순환영역이 발생된다. 협착부의 수가 증가하면 각 협착부 주위의 속도장 은 유사하게 나타나지만 전체 압력손실은 크게 증가한다. 협착부사이의 거리가 변화될 경우 맥동유동속도의 국소최대치와 국소최소치의 차이가 가속시에는 거의 없지만 감속시에는 협 착부사이의 거리에 따라 다르게 나타난다.

  • PDF

Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube (경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위)

  • Moh, Jeong Hah;Cho, Y.I.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady.

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid (점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • When the systolic blood pressure is high, intermittent turbulence in blood flow appears in the aorta and carotid artery with stenosis during the systolic period. The turbulent blood flow is difficult to analyze using the Newtonian turbulence model due to the viscous characteristics of blood flow. As the shear rate is increased, the blood viscosity decreases by the viscoelastic properties of blood and a drag reduction phenomenon occurs in turbulent blood flow. Therefore, a new non-Newtonian turbulent model is required for viscoelastic fluid and hemodynamics. The main aims of this study were to develop a non-Newtonian turbulence model using the drag reduction phenomenon based on the standard $k-{\varepsilon}$ turbulent model for a general non-Newtonian fluid. This was validated with the experimental data and has a good tendency for non-Newtonian turbulent flow. In addition, the computation time and resources were lower than those of the low Reynolds number turbulent model. A modified turbulent model was used to analyze various turbulent blood flows.

A Study on Fluid Flow of Various Viscosities in Coronary Artery (관상동맥 분지관에서 점도에 따른 유체의 유동현상 연구)

  • An, Gi-Yeong;Lee, Hyeon-Seop
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.403-408
    • /
    • 2013
  • 본 논문은 EDISON_CFD를 이용하여 관상동맥 분지관에서 점도에 따른 유체의 유동현상에 관하여 연구를 하였다. 뉴턴유체인 물의 점성계수 일때와 비뉴턴유체인 혈액의 Carreau model에서의 영전단율 점성계수(${\eta}_0$)와 무한전단율 점성계수(${\eta}_{\infty}$)일 때의 유동현상을 살펴보았다. 그 결과 점도가 증가할수록 재순환 영역에서 유체의 속도가 감소하였고 CF 및 CP값이 감소하는 구간의 수가 증가하여 벽면의 저전단응력으로 인해 생기는 재순환영역의 수가 증가하는 것으로 나타났다.

  • PDF

Pulsatile Flow Analyses of Newtonian Fluid and Non-Newtonian Pluid in Circular Tube (원관내 뉴턴유체와 비뉴턴유체의 맥동유동특성)

  • Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Jae-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1585-1596
    • /
    • 2002
  • The objectives of the present study are to numerically and experimentally investigate the steady and pulsatile flow phenomena in the circular tubes, to quantitatively compare the flow characteristics of Newtonian and non-Newtonian fluids, and to find meaningful hemodynamic information through the flow analysis in the human blood vessels. The particle image velocimetry is adopted to visualize the flow fields in the circular tube. and the results from the particle image velocimetry are used to validate the results of the numerical analysis. In order to investigate the blood flow phenomena in the circular tube. constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids. are determined, and the steady and pulsatile momentum equations are solved by the finite volume prediction. The velocity vectors of the steady and pulsatile flow in the circular tube obtained by the particle image velocimetry arc in good agreement with those by the numerical analysis. For the given mass flow rate. the axial velocity profiles of the Newtonian and the non-Newtonian fluids appear differently. The pulsatile flow phenomena of the Newtonian and the non-Newtonian fluids are quite different from those of the steady flow.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(3) -Construction of the Formulation for True Newton Method and Application to Viscous Drag Reduction of Three-Dimensional Flow (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(3) - 트루 뉴턴법을 위한 정식화 개발 및 유체의 3차원 최적 엑티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • We have developed several methods for the optimization problem having large-scale and highly nonlinear system. First, step by step method in optimization process was employed to improve the convergence. In addition, techniques of furnishing good initial guesses for analysis using sensitivity information acquired from optimization iteration, and of manipulating analysis/optimization convergency criterion motivated from simultaneous technique were used. We applied them to flow control problem and verified their efficiency and robustness. However, they are based on quasi-Newton method that approximate the Hessian matrix using exact first derivatives. However solution of the Navier-Stokes equations are very cost, so we want to improve the efficiency of the optimization algorithm as much as possible. Thus we develop a true Newton method that uses exact Hessian matrix. And we apply that to the three-dimensional problem of flow around a sphere. This problem is certainly intractable with existing methods for optimal flow control. However, we can attack such problems with the methods that we developed previously and true Newton method.

Effects of Elastic Blood Vessel Motions on the Wall Shear Stresses for Pulsatile Flow of a Newtonian Fluid and Blood (뉴턴유체와 혈액의 맥동유동시 탄성혈관의 운동이 벽면전단응력분포에 미치는 영향)

  • Roh, Hyung-Woon;Kim, Jae-Soo;Park, Gil-Moon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.318-323
    • /
    • 2001
  • Characteristics of the pulsatile flow in a 3-dimensional elastic blood vessel are investigated to understand the blood flow phenomena in the human body arteries. In this study, a model for the elastic blood vessel is proposed. The finite volume prediction is used to analyse the pulsatile flow in the elastic blood vessel. Variations of the pressure, velocity and wall shear stress of the pulsatile flow in the elastic blood vessel are obtained. The magnitudes of the velocity waveforms in the elastic blood vessel model are larger than those in the rigid blood vessel model. The wall shear stresses on the elastic vessel vary with the blood vessel motions. Amplitude indices of the wall shear stress for blood in the elastic blood vessel are $4\sim5$ times larger than those of the Newtonian fluid. As the phase angle increased, point of the phase angle is are moved forward and the wall shear stresses are increased for blood and the Newtonian fluid.

  • PDF