• 제목/요약/키워드: 뉴스데이터

Search Result 549, Processing Time 0.033 seconds

Interactive Map-based Spatio-Temporal Visualization of Typhoon Situation using Web News BigData (웹 뉴스 빅데이터를 이용한 태풍 상황정보의 인터렉티브 지도 기반 시공간 시각화 방안)

  • Lee, Jiae;Kim, Junchul
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.773-776
    • /
    • 2020
  • 웹 뉴스 기사는 태풍과 같은 재해 발생상황에 대한 신속하고 정확한 정보를 포함하고 있다. 예를 들어, 태풍의 발생시점, 이동·예측경로, 피해·사고 현황 등 유용한 정보를 텍스트, 이미지, 동영상의 형태로 관련 상황정보를 전달한다. 그러나 대부분의 재해재난 관련 뉴스 기사는 특정 시점의 정보만을 웹페이지 형태로 제공하므로, 시계열 측면의 연결성을 지니는 기사들에 대한 정보를 전달하기 어렵다. 또한 시간적 변화에 따라 기사 내용에 포함된 장소, 지역, 건물 등의 지명에 대한 공간적 정보를 지도와 연계하여 정보를 전달하는데 한계가 있어, 시공간적 변화에 따른 특정 재해재난 상황정보에 대한 전체적인 현황파악이 어렵다. 따라서, 본 논문에서는 데이터 시각화 측면에서 이러한 한계를 극복하기 위해, 1) 웹크롤링을 통해 구축된 뉴스 빅데이터를 자연어 처리를 통해 태풍과 관련된 뉴스 기사들을 추출하였고, 2) 시공간적 관련 정보를 지식그래프로 구축하였고, 이를 통해 최근 발생한 태풍 사건들과 관련된 뉴스 정보를 시계열 특성을 고려하여 3) 인터렉티브 지도 기반의 태풍 상황정보를 시각화하는 방안을 연구하였다.

Translation Pre-processing Technique for Improving Analysis Performance of Korean News (한국어 뉴스 분석 성능 향상을 위한 번역 전처리 기법)

  • Lee, Ji-Min;Jeong, Da-Woon;Gu, Yeong-Hyeon;Yoo, Seong-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.619-623
    • /
    • 2020
  • 한국어는 교착어로 1개 이상의 형태소가 단어를 이루고 있기 때문에 텍스트 분석 시 형태소를 분리하는 작업이 필요하다. 자연어를 처리하는 대부분의 알고리즘은 영미권에서 만들어졌고 영어는 굴절어로 특정 경우를 제외하고 일반적으로 하나의 형태소가 단어를 구성하는 구조이다. 그리고 영문은 주로 띄어쓰기 위주로 토큰화가 진행되기 때문에 텍스트 분석이 한국어에 비해 복잡함이 떨어지는 편이다. 이러한 이유들로 인해 한국어 텍스트 분석은 영문 텍스트 분석에 비해 한계점이 있다고 알려져 있다. 한국어 텍스트 분석의 성능 향상을 위해 본 논문에서는 번역 전처리 기법을 제안한다. 번역 전처리 기법이란 원본인 한국어 텍스트를 영문으로 번역하고 전처리를 거친 뒤 분석된 결과를 재번역하는 것이다. 본 논문에서는 한국어 뉴스 기사 데이터와 번역 전처리 기법이 적용된 영문 뉴스 텍스트 데이터를 사용했다. 그리고 주제어 역할을 하는 키워드를 단어 간의 유사도를 계산하는 알고리즘인 Word2Vec(Word to Vector)을 통해 유사 단어를 추출했다. 이렇게 도출된 유사 단어를 텍스트 분석 전문가 대상으로 성능 비교 투표를 진행했을 때, 한국어 뉴스보다 번역 전처리 기법이 적용된 영문 뉴스가 약 3배의 득표 차이로 의미있는 결과를 도출했다.

  • PDF

Near Duplicate News Combining System to Prevent Information Loss Due to Deduplication of News (뉴스 중복 제거에 따른 정보 유실 방지하기 위한 중복 뉴스 결합 시스템)

  • Kim, Tae-Hwan;Choi, Won-Jae;Kim, Jung-Sun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.391-392
    • /
    • 2020
  • 본 논문에서는 중복 데이터가 가장 많은 인터넷 뉴스 상에서 중복 뉴스를 제거하는 경우 중복 뉴스로 판단되는 유사 중복 문서를 제거할 때 정보의 유실이 발생한다. 본 논문에서는 인터넷 뉴스를 대상으로 유사 중복 뉴스를 제거할 때 발생하는 정보의 유실을 해결하기 위해 제거 된 뉴스와 결합하여 새로운 뉴스를 만드는 중복 뉴스 결합 시스템을 제안한다. 제안하는 방법은 뉴스의 기본 문장과 탐지된 중복 뉴스의 문장 간의 관계 유사도를 활용하여 유실 된 정보를 파악하고 파악된 결과를 기본 뉴스에 결합하여 정보의 유실을 최소화 시키는 것을 실험을 통해 보였다. 향후 뉴스분야뿐만 아니라 중복 문서 제거가 필요한 문서를 다루는 모든 분야에서 정보의 유실을 최소화하기 위한 방법으로 활용할 수 있을 것으로 기대 한다.

  • PDF

A Topic Analysis of SW Education Textdata Using R (R을 활용한 SW교육 텍스트데이터 토픽분석)

  • Park, Sunju
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.517-524
    • /
    • 2015
  • In this paper, to find out the direction of interest related to the SW education, SW education news data were gathered and its contents were analyzed. The topic analysis of SW education news was performed by collecting the data of July 23, 2013 to October 19, 2015. By analyzing the relationship among the most mentioned top 20 words with the web crawling using R, the result indicated that the 20 words are the closely relevant data as the thickness of the node size of the 20 words was balancing each other in the co-occurrence matrix graph focusing on the 'SW education' word. Moreover, our analysis revealed that the data were mainly composed of the topics about SW talent, SW support Program, SW educational mandate, SW camp, SW industry and the job creation. This could be used for big data analysis to find out the thoughts and interests of such people in the SW education.

News Data Analysis Using Acoustic Model Output of Continuous Speech Recognition (연속음성인식의 음향모델 출력을 이용한 뉴스 데이터 분석)

  • Lee, Kyong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, the acoustic model output of CSR(Continuous Speech Recognition) was used to analyze news data News database used in this experiment was consisted of 2,093 articles. Due to the low efficiency of language model, conventional Korean CSR is not appropriate to the analysis of news data. This problem could be handled successfully by introducing post-processing work of recognition result of acoustic model. The acoustic model more robust than language model in Korean environment. The result of post-processing work was made into KIF(Keyword information file). When threshold of acoustic model's output level was 100, 86.9% of whole target morpheme was included in post-processing result. At the same condition, applying length information based normalization, 81.25% of whole target morpheme was recognized. The purpose of normalization was to compensate long-length morpheme. According to experiment result, 75.13% of whole target morpheme was recognized KIF(314MB) had been produced from original news data(5,040MB). The decrease rate of absolute information met was approximately 93.8%.

  • PDF

An Exploratory Study on the Establishment and Provision of Universal Literacy for Sustainable Development in the Era of Fake News (가짜뉴스의 시대, 지속가능한 발전을 위한 보편적 리터러시의 구축 및 제공에 대한 실험적 연구)

  • Lee, Jeong-Mee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.1
    • /
    • pp.85-106
    • /
    • 2021
  • The purpose of this study is to examine the concept and definition of fake news focusing on misinformation/false information and is to examine the ways in which our society can respond to the distortion of social reality and damage to democracy caused by information distortion such as fake news. To do this, the concept of fake news was examined based on the level of facticity and intention to device, and our social environment in which fake news was created and spread was examined from the perspective of datafication. In this environment, the library community, which plays a pivotal role in human access to and use of information, argued that it should strive to establish and provide universal literacy education in order to realize the Sustainable Development Goals of the UN 2030 agenda. The core of universal literacy education is to understand the society by investigating and analyzing data communication types according to the degree of datafication and the political, economic, social, and cultural background of society. For this reason, it was concluded that universal literacy should be implemented flexibly according to the degree of datafiation and users of each society.

The Venture Business Starts News and SNS Big Data Analytics (벤처창업 관련 뉴스 및 SNS 빅데이터 분석)

  • Ban, ChaeHoon;Lee, YeChan;Ahn, DaeJoong;Kwak, YoonHyeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.99-102
    • /
    • 2017
  • 대규모의 데이터가 생산되고 저장되는 정보화 시대에서 현재와 과거의 데이터를 바탕으로 미래를 추측하고 방향성을 알아갈 수 있는 빅데이터의 중요성이 강조되고 있다. 정형화 되지 못한 대규모 데이터를 빅데이터 분석 도구인 R과 웹크롤링을 통해 분석하고 그 통계를 기초로 데이터의 정형화와 정보 분석을 하도록 한다. 본 논문에서는 R과 웹크롤링을 이용하여 최근 이슈가 되고 있는 벤처창업을 주 키워드로 하여 뉴스 및 SNS에서 나타나는 벤처창업 관련 빅데이터를 분석한다. 뉴스기사와 페이스북, 트위터에서 벤처창업 관련 데이터를 수집하고 수집된 데이터에서 키워드를 분류하여 효율적인 벤처창업의 방법과 종류, 방향성에 대해 예측한다. 과거의 벤처창업 실패요인을 분석하고 현재의 문제점을 찾아 데이터 분석을 통해 벤처창업의 흐름과 방향성을 제시하여 창업자들이 겪을 수 있는 어려움을 사전에 예측하고 파악함으로써 실질적인 벤처창업에 크게 이바지할 것으로 보여 진다.

  • PDF

News Article Big Data Analysis based on Machine Learning in Distributed Processing Environments (분산 처리 환경에서의 기계학습 기반의 뉴스 기사 빅 데이터 분석)

  • Oh, Hee-bin;Lee, Jeong-cheol;Kim, Kyungsup
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.59-62
    • /
    • 2017
  • 본 논문에서는 텍스트 형태의 빅 데이터를 분산처리 환경에서 기계학습을 이용하여 분석하고 유의미한 데이터를 만들어내는 시스템에 대해 다루었다. 빅 데이터의 한 종류인 뉴스 기사 빅 데이터를 분산 시스템 환경(Spark) 내에서 기계 학습(Word2Vec)을 이용하여 뉴스 기사의 키워드 간의 연관도를 분석하는 분산 처리 시스템을 설계 및 구현하였고, 사용자가 입력한 검색어와 연관된 키워드들을 한눈에 파악하기 쉽게 만드는 시각화 시스템을 설계하였다.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Text Mining-based Fake News Detection Using News And Social Media Data (뉴스와 소셜 데이터를 활용한 텍스트 기반 가짜 뉴스 탐지 방법론)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.19-39
    • /
    • 2018
  • Recently, fake news has attracted worldwide attentions regardless of the fields. The Hyundai Research Institute estimated that the amount of fake news damage reached about 30.9 trillion won per year. The government is making efforts to develop artificial intelligence source technology to detect fake news such as holding "artificial intelligence R&D challenge" competition on the title of "searching for fake news." Fact checking services are also being provided in various private sector fields. Nevertheless, in academic fields, there are also many attempts have been conducted in detecting the fake news. Typically, there are different attempts in detecting fake news such as expert-based, collective intelligence-based, artificial intelligence-based, and semantic-based. However, the more accurate the fake news manipulation is, the more difficult it is to identify the authenticity of the news by analyzing the news itself. Furthermore, the accuracy of most fake news detection models tends to be overestimated. Therefore, in this study, we first propose a method to secure the fairness of false news detection model accuracy. Secondly, we propose a method to identify the authenticity of the news using the social data broadly generated by the reaction to the news as well as the contents of the news.