• Title/Summary/Keyword: 뉴스기사 본문

Search Result 21, Processing Time 0.028 seconds

Analysis on the Hyperlink of News Articles on the Internet Media : Focusing upon the Naver, Daum, Yahoo Site (인터넷 미디어 뉴스기사 본문의 하이퍼링크에 대한 분석 -네이버, 다음, 야후를 중심으로-)

  • Park, Kwang-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.329-340
    • /
    • 2010
  • This paper aims to analyze the hyperlink between the portal sites and the press dot coms news and to grasp the features of news service on the online journalism. As a result of the analysis, the portal sites, in the number of news articles which the hyperlink service had been provided, were more than the press dot coms. But in the number of the hyperlinks in the news story which hyperlink service had been provided, the press dot coms were more than the portal sites. The contents that were hyperlinked to the news stories of online journalism were composed of a informative type and an advertising one. All contents that were hyperlinked to the news stories on portal site were informative. On the other hand, about 92% of the contents that were hyperlinked to the news stories on the press web sites were advertising. By means of this analysis, the features of news service on the online journalism could be grasped.

An Analysis of the Contents and Make-up of the Page in a News Story of the Internet Newspaper -focusing on Naver, Daum, Nate, Yahoo- (인터넷신문의 뉴스기사 페이지 구성과 콘텐츠에 대한 분석 -네이버, 다음, 네이트, 야후를 중심으로-)

  • Park, Kwang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1345-1354
    • /
    • 2014
  • This paper has analyzed how the format of the text page and the contents of space surrounding the text in the news stories of the portal sites are made-up. The result of analysis showed that the formats of the text page in Naver news story were more intricate than those of Daum, Nate and Yahoo. Also, Naver was higher in the number of advertising, the type of advertising, the entertainment contents, and various types of contents than other three portals. Especially, the percentage of new story related to entertainers was the highest. It was the portal site Daum that advertised the news story most of all in its text page. In contrast, it was portal site Yahoo that inserted the advertisements least of all. But from the whole sides, it was found that the formats and contents of the text page of the news story in these three portal sites have similarly been made-up. Consequently speaking, for the serviceability of use in news story, it can be evaluated that the news service method in portal sites is higher than that in press dot coms.

An Analysis of the Hyperlinks of Internet Newspaper Sites: Focused on Chosun.com and the Washington Post (인터넷신문 섹션별 뉴스기사 본문의 하이퍼링크에 대한 분석: 조선닷컴과 워싱턴포스트를 중심으로)

  • Kim, Seong-Hee;Roh, Yoon-Ju
    • Journal of Information Management
    • /
    • v.43 no.4
    • /
    • pp.119-142
    • /
    • 2012
  • This study analyzed the characteristics of hyperlink service from news articles in chosun.com and washington Post sites. The study showed that the Washington Post revealed many hyperlink-related elements and an increase in interactivity while Chosun.com was not established consistent hyperlink service. Also, this study analyzed news distribution based on genre, as a result, the life section was occupied the highest proportion with 32.4% for Chosun.com, while the news sections were evenly distributed for the Washington Post. Finally, as a result of classifying the linked words into 3 categories(Informational, navigational, and transactional), the highest contents category in both Chosun.com and Washington Post turned out to be informational words. Theses results can be used to develop and provide the effective link service of news articles in internet newspaper sites.

Fake News Detection based on Convolutional Neural Network and Sentiment Analysis (합성곱신경망과 감성분석 기반의 가짜뉴스 탐지)

  • Lee, Tae Won;Yang, Yeongwook;Park, Ji Su;Shon, Jin Gon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.64-67
    • /
    • 2021
  • 가짜뉴스는 뉴스 기사 형식을 갖는 날조된 정보를 의미하며, 최근 모바일 인터넷 장치의 보급과 소셜 네트워크 서비스의 대중화로 온라인 확산이 가속화되고 있다. 기존 연구는 가짜뉴스의 탐지를 위해 뉴스의 주제목, 부제목, 리드, 본문 등 뉴스 기사를 이루는 구성요소를 비롯하여 언론사, 기자, 날짜, 확산 경로 등의 메타 데이터를 대상으로 분석하였다. 그러나 뉴스의 제목과 본문 및 메타 데이터 등은 내용 수정이 쉬워, 다량의 데이터를 학습한 모델이라 하더라도 높은 정확도를 장기간 유지하기 어려울 수 있다. 이러한 문제점을 해결하기 위하여 본 논문은 합성곱 신경망을 이용해 문맥 정보를 분석하고 장단기 메모리 기반의 감성분석을 추가로 수행한다. 문맥 정보와 가짜뉴스 유포자가 쉽게 수정할 수 없는 감성 변화 패턴을 활용하여 성능이 개선된 가짜뉴스 탐지 모델을 제안한다.

Objectivity in Korean News Reporting : Machine Learning-Based Verification of News Headline Accuracy (기계학습 기반 국내 뉴스 헤드라인의 정확성 검증 연구)

  • Baik, Jisoo;Lee, Seung Eon;Han, Jiyoung;Cha, Meeyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.281-286
    • /
    • 2021
  • 뉴스 헤드라인에 제3자의 발언을 직접 인용해 전언하는 이른바 '따옴표 저널리즘'이 언론 보도의 객관주의 원칙을 해치는지는 언론학 및 뉴스 구독자에게 중요한 문제이다. 이 연구는 온라인 포털사이트를 통해 실시간 유통되는 한국어 기사의 정확성을 판별하기 위한 기계학습(Machine Learning) 모델을 제안한다. 이 연구에서 제안하는 모델은 Edit Distance와 FastText 기법을 활용해 기사 제목과 본문 내 인용구의 유사성을 측정하고, XGBoost 모델을 활용해 최종 분류한다. 아울러 이 모델을 통해 229만 건의 뉴스 헤드라인에 대해 직접 인용구가 포함된 기사가 취재원의 발언을 주관적인 윤색없이 독자들에게 전하고 있는지를 판별했다. 이뿐만 아니라 딥러닝 기반의 KoELECTRA 모델을 활용해 기사의 제목 내 인용구에 대한 감성 분석을 진행했다. 분석 결과, 윤색이 가미되지 않은 직접 인용형 기사의 비율이 지난 20년 동안 10% 이상 증가했으며, 기사 제목의 인용구에 나타나는 감정은 부정 감성이 긍정 감성의 2.8배 정도로 우세했다. 이러한 시도는 앞으로 계산사회과학 방법론과 빅데이터에 기반한 언론 보도의 평가 및 개선에 도움을 주리라 기대한다.

  • PDF

Korean Fake News Detection with User Graph (사용자 그래프 기반 한국어 가짜뉴스 판별 방법)

  • Kang, MyungHoon;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.97-102
    • /
    • 2021
  • 최근 급격한 정보기술의 발달로 가짜뉴스가 사회문제로 대두되고 있다. 한국어 가짜뉴스 문제를 딥러닝으로 해결하기 위해서 기존의 연구들은 본문 기반의 가짜뉴스 탐지를 진행하였으며 최근에는 기사 본문 외의 보조적 정보를 활용하는 방법으로 연구가 진행되고 있다. 그러나 기존의 방식과 개선된 방식들 모두 적절한 가짜뉴스 탐지 방법을 제시하지 못하여 모델이 산출한 가짜뉴스 표현 벡터의 품질을 보장할 수 없었다. 또한 한국어 가짜뉴스 문제를 해결함에 있어서 적절한 공개 데이터셋 또한 제공되지 않았다. 따라서 본 논문은 한국어 가짜뉴스 탐지 문제에서 독자 반응정보를 추가하여 효과적인 학습을 할 수 있는 '사용자 그래프 기반 한국어 가짜뉴스 판별 방법'과 해당 모델이 적절히 학습할 수 있는 간이 데이터셋 구축 방법을 제안한다.

  • PDF

A Morphological Analysis Method of Predicting Place-Event Performance by Online News Titles (온라인 뉴스 제목 분석을 통한 특정 장소 이벤트 성과 예측을 위한 형태소 분석 방법)

  • Choi, Sukjae;Lee, Jaewoong;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.15-32
    • /
    • 2016
  • Online news on the Internet, as published open data, contain facts or opinions about a specific affair and hence influences considerably on the decisions of the general publics who are interested in a particular issue. Therefore, we can predict the people's choices related with the issue by analyzing a large number of related internet news. This study aims to propose a text analysis methodto predict the outcomes of events that take place in a specific place. We used topics of the news articles because the topics contains more essential text than the news articles. Moreover, when it comes to mobile environment, people tend to rely more on the news topics before clicking into the news articles. We collected the titles of news articles and divided them into the learning and evaluation data set. Morphemes are extracted and their polarity values are identified with the learning data. Then we analyzed the sensitivity of the entire articles. As a result, the prediction success rate was 70.6% and it showed a clear difference with other analytical methods to compare. Derived prediction information will be helpful in determining the expected demand of goods when preparing the event.

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.

Detecting Improper Sentences in a News Article Using Text Mining (텍스트 마이닝을 이용한 기사 내 부적합 문단 검출 시스템)

  • Kim, Kyu-Wan;Sin, Hyun-Ju;Kim, Seon-Jin;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.294-297
    • /
    • 2017
  • SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.

  • PDF

Detecting Improper Sentences in a News Article Using Text Mining (텍스트 마이닝을 이용한 기사 내 부적합 문단 검출 시스템)

  • Kim, Kyu-Wan;Sin, Hyun-Ju;Kim, Seon-Jin;Lee, Hyun Ah
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.294-297
    • /
    • 2017
  • SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함 되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.

  • PDF