• 제목/요약/키워드: 뉴로미터

검색결과 37건 처리시간 0.019초

클러스터링 기반 뉴로-퍼지 모델링 학습 (Neuro-Fuzzy Modeling Learning method based on Clustering)

  • 김승석;곽근창;이대종;김성수;유정웅;김주식;김용태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.289-292
    • /
    • 2005
  • 본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

EM알고리즘을 기반으로 한 뉴로-퍼지 모델링 (EM Algorithm based Neuro-Fuzzy Modeling)

  • 김승석;전병석;김주식;유정웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2846-2849
    • /
    • 2002
  • 본 논문은 뉴로-퍼지 시스템에서의 규칙 선택 및 모델 학술에 대하여 EM 알고리즘을 기반으로 하는 구조 동정을 제안한다. 뉴로-퍼지 모델링에서의 초기 파라미터가 학습과정에서의 모델 성능에 큰 영향을 주고 있다. 주어진 데이터에 근거한 파라미터 추정에는 다양한 방법들이 소개되고 응용되어져 왔는데 이전 연구들에서 볼 수 있는 HCM, FCM 등은 데이터와의 유클리디언 거리를 최소화하는 중심점을 파라미터로 선택하는 등의 방법과 퍼지 균등화 등은 데이터의 확률 밀도함수를 이용하여 파라미터를 추정하였다. 제안된 방법에서는 데이터에서의 Maximum Likelihood Estimator를 기반으로 하는 방법으로 EM 알고리즘을 이용하였다. 초기 파라미터의 결정에서 EM 알고리즘을 이용하여 뉴로-퍼지 모델의 전제부 소속함수 파라미터 추정을 실시한다. EM 알고리즘을 이용한 퍼지 모델의 특징으로는 전제부가 클러스터링에 의하여 생성되므로 입력의 차원이나 소속함수의 수가 증가하여도 규칙의 수는 증가하지 않는다. 이를 자동차 MPG 예제를 통하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

클러스터링과 퍼지 규칙을 이용한 뉴로-퍼지 시스템 학습 및 모델링 (Learning and Modeling of Neuro-Fuzzy modeling using Clustering and Fuzzy rules)

  • 김승석;곽근창;김주식;유정웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2879-2881
    • /
    • 2005
  • 본 논문에서는 뉴로-퍼지 모델의 전제부 소속함수의 새로운 학습방법을 통한 모델링 기법을 제안한다. 모델의 크기와 학습시간을 줄이는 기법으로 클러스터링 기법을 이용한 모델의 초기 파라미터 결정 방법이 있다. 이는 클러스터링 후 이들 파라미터를 다시 모델에 적용하여 모델을 학습하는 순차적 방법으로써 모델의 학습이 끝난 후의 전제부 파라미터가 클러스터링 파라미터와 연관성을 가지지 못하는 경우가 발생하였다. 또한 오차미분 기반 학습에서는 전제부 초기치가 국부적 최적해에서 벋어나지 못하는 문제점을 가지고 있다. 본 논문에서는 자율적으로 클러스터의 수를 추정하며 이들 파라미터를 최적화하며 이를 이용하여 뉴로-퍼지 모델의 학습을 실시하는 학습기법을 제안하였다. 제안된 방법에서는 기존의 오차미분 기반 학습을 클러스터링 기반 학습으로 확장하였으며 이를 이용한 모델의 성능을 기존의 연구결과와 비교하여 우수성을 보인다.

  • PDF

PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화 (Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization)

  • 김승석;김용태;김주식;전병석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

뉴로-퍼지 제어기를 이용한 능동 소음제거 (Adaptive Noise Canceling by Neuro-Fuzzy Controller)

  • 박희경;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.471-473
    • /
    • 1998
  • 본 논문에서는 뉴로-퍼지 제어기를 이용한 능동 소음제어기를 구현하였다. 능동 소음제어기는 잡음에 의하여 왜곡된 신호로부터 잡음을 제거하여 원 신호를 복원하는 제어시스템이다. 일반적으로 잡음의 특성이 시간에 따라 변화하고, 전달특성이 비선형적이므로 고정된 제어기에 의해서는 제어할 수 없다. 이 논문에서는 뉴로-퍼지 제어기를 사용하였고, 파라미터를 오차 역전과 학습을 통하여 변화시킴으로써 잡음의 특성에 효과적으로 적응하는 능동 소음제어기를 구성하였다. 시뮬레이션을 통하여 여러 종류의 신호에 대해서 랜덤 노이즈를 발생시키고 구성된 제어기의 성능을 확인하였다.

  • PDF

뉴로-퍼지를 이용한 만성적인 스트레스 평가 (Chronic Stress Evaluation using Neuro-Fuzzy)

  • 신재우;설아람;성홍모;김원식;차동익;이철규;윤영로
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권5호
    • /
    • pp.465-471
    • /
    • 2003
  • 본 논문에서는 생체신호 파라미터들을 이용해서 만성적인 스트레스를 평가하는 방법을 개발하고자 하였다. Wistar 쥐에게 14 일간의 소음 스트레스를 부과하고, 매 시간마다 생체신호를 획득하였다. 생체신호로부터 추출한 파라미터들을 통합하기 위한 퍼지추론시스템을 구축하기 위하여, 적응형 뉴로-퍼지 추론시스템으로 퍼지추론시스템의 파라미터들을 구하였다. 훈련 데이터 집합 중 입력 데이터 집합은 생체신호로부터 추출한 파라미터들을, 출력 데이터 집합은 코티솔 호르몬의 생성량으로부터 추정한 목표값을 사용하였다. 퍼지추론시스템으로 생체신호 파라미터들을 통합하고, 그 결과를 24 시간마다 구분하여 Cosinor 분석법을 적용하여 생체리듬의 변화를 관찰하였다. 생체리듬이 깨어진 정도에 의해서 만성적인 스트레스를 평가하였다. 생체신호 파라미터들을 퍼지추론으로 통합하고, 그 결과에서 생체리듬을 분석하여 스트레스 정도를 계산했다. 휴식기의 스트레스 정도를 l이라고 가정하면, 소음 스트레스를 받은지 14일째 되는 날에는 1.37. 7일간의 회복 후에는 1.47의 스트레스 정도가 나왔다. 즉, 쥐는 14일간의 소음으로 휴식 때보다 37% 증가된 스트레스를 받았고, 7일의 회복기를 통해 스트레스로부터 회복되지 않았다.

온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어 (Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System)

  • 윤기후;곽근창
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.414-422
    • /
    • 2002
  • 본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.

계통의 부하주파수 제어를 위한 뉴로-퍼지제어기 설계에 관한 연구 (Design of Neuro-Fuzzy Controller for Load Frequency Control of Power Line)

  • 이오걸;김상효
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2005
  • 본 논문에서는 이와 같은 요청에 부합되는 강인한 처지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법(Steepest Gradient Method)에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기 (Neuro-Fuzzy Control : NFC)의 구조 및 알고리즘을 제안하였다.

  • PDF

부하 주파수 제어에 의한 전력계통의 뉴로-퍼지제어기 설계 (Design of Neuro-Fuzzy Controller of Power Line for Load Frequency Control)

  • 이오걸;김상효
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.439-440
    • /
    • 2004
  • 전력시스템의 부하주파수제어는 전력계통운용에 있어서 가장 중요하게 다루어야 한다. 본 논문에서는 강인한 퍼지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기의 구조 및 알고리즘을 제안하였다.

  • PDF

EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성 (Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF