• 제목/요약/키워드: 뉴로모픽 시냅스 소자

검색결과 6건 처리시간 0.009초

시냅스 소자 구현을 위한 균일 양자화 방식 (Uniform Quantization Method for Synaptic Device)

  • 이재은;이철준;이대석;김동욱;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.262-263
    • /
    • 2019
  • 본 논문에서는 뉴로모픽 시스템 구현을 위해 시냅스 소자의 비선형적인 전도도를 고려한 균일 양자화 방식을 제안한다. 소프트웨어로 학습시킨 가중치에 최댓값을 나누는 것으로 정규화를 수행한다. 그 다음, 제안하는 균일 양자화 방식을 수행한다. 양자화를 수행할 때 소자의 제한적인 전도도 레벨을 고려하여 5 부터 25 레벨로 설정하여 실험하였다. 그 결과 MNIST 시험 데이터 세트의 정확도가 10 레벨에서 95.75%로, 소프트웨어의 정확도와 1%미만의 차이를 가진다.

  • PDF

뉴로모픽 감각 인지 기술 동향 - 촉각, 후각을 중심으로 (Neuromorphic Sensory Cognition-Focused on Touch and Smell)

  • 박강호;이형근;강유성;김도엽;임정욱;제창한;윤조호;김정연;이성규
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.62-74
    • /
    • 2023
  • In response to diverse external stimuli, sensory receptors generate spiking nerve signals. These generated signals are transmitted to the brain along the neural pathway to advance to the stage of recognition or perception, and then they reach the area of discrimination or judgment for remembering, assessing, and processing incoming information. We review research trends in neuromorphic sensory perception technology inspired by biological sensory perception functions. Among the various senses, we consider sensory nerve decoding technology based on sensory nerve pathways focusing on touch and smell, neuromorphic synapse elements that mimic biological neurons and synapses, and neuromorphic processors. Neuromorphic sensory devices, neuromorphic synapses, and artificial sensory memory devices that integrate storage components are being actively studied. However, various problems remain to be solved, such as learning methods to implement cognitive functions beyond simple detection. Considering applications such as virtual reality, medical welfare, neuroscience, and cranial nerve interfaces, neuromorphic sensory recognition technology is expected to be actively developed based on new technologies, including combinatorial neurocognitive cell technology.

광 시냅스 및 뉴로모픽 소자 기술 (Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices)

  • 송승호;김지훈;김영훈
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.215-222
    • /
    • 2022
  • Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

뉴로모픽 시스템 향상을 위한 RRAM 기반 시냅스 소자 리뷰 (A Review of RRAM-based Synaptic Device to Improve Neuromorphic Systems)

  • 박건우;김제규;최건우
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.50-56
    • /
    • 2022
  • In order to process a vast amount of data, there is demand for a new system with higher processing speed and lower energy consumption. To prevent 'memory wall' in von Neumann architecture, RRAM, which is a neuromorphic device, has been researched. In this paper, we summarize the features of RRAM and propose the device structure for characteristic improvement. RRAM operates as a synapse device using a change of resistance. In general, the resistance characteristics of RRAM are nonlinear and random. As synapse device, linearity and uniformity improvement of RRAM is important to improve learning recognition rate because high linearity and uniformity characteristics can achieve high recognition rate. There are many method, such as TEL, barrier layer, NC, high oxidation properties, to improve linearity and uniformity. We proposed a new device structure of TiN/Al doped TaOx/AlOx/Pt that will achieve high recognition rate. Also, with simulation, we prove that the improved properties show a high learning recognition rate.

단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터 (Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes)

  • 장동준;권민우
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.633-638
    • /
    • 2022
  • 최근 인간의 뇌를 모방한 스파이킹 뉴럴 네트워크(SNNs)의 뉴로모픽(Neuromorphic) 시스템이 주목을 받고 있다. 뉴로모픽 기술은 인지 응용과 처리 과정에서 속도가 빠르고 전력 소모가 적다는 장점이 있다. SNNs 기반의 저항성 랜덤 엑세스 메모리(RRAM) 은 병렬 연산을 위한 가장 효율적인 구조이며 스파이크 타이밍 종속 가소성(STDP)의 점진적인 스위칭 동작을 수행한다. 시냅스 소자 동작으로서의 RRAM은 저 전력 프로세싱과 다양한 메모리 상태를 표현한다. 하지만, RRAM 소자의 통합은 높은 스위칭 전압 및 전류를 유발하여 높은 전력 소비를 초래한다. RRAM의 동작 전압을 낮추기 위해서는 스위칭 레이어와 금속 전극의 신소재를 개발하는 것이 중요하다. 본 연구에서는 스위칭 전압을 낮추기 위해 전기적, 기계적 특성이 우수한 단일 벽 탄소나노튜브(SWCNTs)를 갖는 (Metal/Al2O3/HfOx/SWCNTs/N+silicon, MOCS)라는 최적화된 새로운 구조를 제안하였다. 따라서 SWCNTs 기반 멤리스터의 점진적인 스위칭 동작 및 저 전력 I/V 곡선의 향상을 보여준다.