Annual Conference on Human and Language Technology
/
2018.10a
/
pp.176-178
/
2018
트위터는 최대 140자의 단문을 주고받는 소셜 네트워크 서비스이다. 트위터의 해시 태그는 주로 문장의 핵심 단어나 주요 토픽 등을 링크하게 되는데 본 논문에서는 이러한 정보를 이용하여 키워드 추출에 활용한다. 문장을 Character CNN, Bi-LSTM을 통해 문장 표현을 얻어내고 각 Span에서 이러한 문장 표현을 활용하여 Span 표현을 생성한다. Span 표현을 이용하여 각 Span에 대한 Score를 얻고 높은 점수의 Span을 이용하여 키워드를 추출한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.450-452
/
2021
본 논문은 범용의 한국어 패러프레이즈 문장 인식 모델 개발을 위한 연구를 다룬다. 범용의 목적을 위해서 가장 걸림돌이 되는 부분 중의 하나는 적대적 예제에 대한 강건성이다. 왜냐하면 패러프레이즈 문장 인식에 대한 적대적 예제는 일반 유형의 말뭉치로 학습시킨 인식 모델을 무력화 시킬 수 있기 때문이다. 또한 적대적 예제의 유형이 다양하기 때문에 다양한 유형에 대해서도 대응할 수 있어야 하는 어려운 점이 있다. 본 논문에서는 다양한 적대적 예제 유형과 일반 유형 모두에 대해서 패러프레이즈 문장 여부를 인식할 수 있는 딥 뉴럴 네트워크 모델을 제시하고자 한다.
Park, Sung-Jun;Kim, Gyu-Min;Hwang, Seung-Jun;Baek, Joong-Hwan
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.389-395
/
2021
In this paper, we propose a target image exchange model to improve performance of the object tracking algorithm based on a Siamese network. The object tracking algorithm based on the Siamese network tracks the object by finding the most similar part in the search image using only the target image specified in the first frame of the sequence. Since only the object of the first frame and the search image compare similarity, if tracking fails once, errors accumulate and drift in a part other than the tracked object occurs. Therefore, by designing a CNN(Convolutional Neural Network) based model, we check whether the tracking is progressing well, and the target image exchange timing is defined by using the score output from the Siamese network-based object tracking algorithm. The proposed model is evaluated the performance using the VOT-2018 dataset, and finally achieved an accuracy of 0.611 and a robustness of 22.816.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.77-80
/
2003
신경망의 퍼셉트론 학습법에는 이진 또는 연속 활성화 함수가 사용된다. 초기 연결강도는 임의의 값으로 설정하며, 목표치와 실제 출력과의 차이를 이용하는 것이 주된 특징이다. 즉 구해진 오차는 학습률에 따라서 다음 단계의 연결강도에 영향을 주게 된다. 이런 경우 학습률이 너무 크면 수렴성을 보장할 수 없으며, 반대로 너무 작게 선정하면 학습이 매우 느리게 진행되는 단점이 발생한다. 이런 이유로 능동적인 학습률의 변화는 신경망의 퍼셉트론 학습법에 중요한 관건이 리며, 주어진 문제를 최적으로 학습을 위해서는 결국 상황에 따른 적절한 학습률 조정이 필요하다. 본 논문에서는 학습률 조정에 퍼지 모델을 적용하는 신경망 학습 방법을 제안하고자 한다. 제안한 방법에 의한 학습은 오차의 변화에 따라 학습률을 조정하는 방식을 사용하였고, 그 결과 연결강도를 능동적으로 변화시켜 효과적인 학습 결과를 얻었다. 학습률 변화는 'Sugeno 퍼지 모델'을 이용하여 구현하였다.
Journal of the Korea Society of Computer and Information
/
v.15
no.12
/
pp.27-35
/
2010
Extracting skin color is significant in adult image detection. However, conventional methods still have essential problems in extracting skin color. That is, colors of human skins are basically not the same because of individual skin difference or difference races. Moreover, skin regions of images may not have identical color due to makeup, different cameras used, etc. Therefore, most of the existing methods use predefined skin color models. To resolve these problems, in this paper, we propose a new adult image detection method that robustly segments skin areas with an input image-adapted skin color distribution model, and verifies if the segmented skin regions contain naked bodies by fusing several representative features through a neural network scheme. Experimental results show that our method outperforms others through various experiments. We expect that the suggested method will be useful in many applications such as face detection and objectionable image filtering.
Ullah, Fath U Min;Ullah, Amin;Muhammad, Khan;Lee, Mi Young;Baik, Sung Wook
The Journal of Korean Institute of Next Generation Computing
/
v.14
no.5
/
pp.53-59
/
2018
Due to the recent developments in computer vision technology, complex actions can be recognized with reasonable accuracy in smart cities. In contrast, violence recognition such as events related to fight and knife, has gained less attention. The capability of visual surveillance can be used for detecting fight in streets or in prison centers. In this paper, we proposed a deep learning-based violence recognition method for surveillance cameras. A convolutional neural network (CNN) model is trained and fine-tuned on available benchmark datasets of fights and knives for violence recognition. When an abnormal event is detected, an alarm can be sent to the nearest police station to take immediate action. Moreover, when the probabilities of fight and knife classes are predicted very low, this situation is considered as normal situation. The experimental results of the proposed method outperformed other state-of-the-art CNN models with high margin by achieving maximum 99.21% accuracy.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1996.10a
/
pp.24-26
/
1996
뇌는 신경세포로 이루어진 거대한 시스템이다. 이러한 뇌의 특징은 자기조직 시스템이면서 외계의 정보구조에 맞추어서 자신의 능력을 높일 수 있다는 것이다. 또한 뇌는 병렬정보처리 방식을 대폭적으로 채용한 시스템으로서 제어기구가 전체적으로 분산되어 있다. 이러한 뇌의 동작은 구조적으로 안정적이며 그 구성소자가 어느 정도 파괴되더라도 우수한 동작특성을 유지할 수 있다. 이것은 뇌에 있어서 정보가 거시화 및 분산화 되어 있다는 증거이며, 연상기억과 내용 어드레스 기억 등과 같은 탁월한 기억방식을 실현할 뿐만 아니라 망각능력도 가지고 있다. 현실의 뇌 그 자체를 조사하는 것이 어려운 상황에서는 뇌에 관한 여러 가지 모델을 만들고 이 모델을 구체적으로 상세히 조사함으로써 현실의 뇌를 이해하고자하는 방법이 중요시 된다. 본 강연에서는 이러한 구성적 방법론의 필요성 및 뇌의 생리학적 측면, 뇌의 모델로서의 측면 그리고 신경회로망의 발전단계와 뇌 과학의 세계적 연구동향에 관하여 살펴본다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.305-308
/
2005
본 논문은 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크(Genetic Algorithm-based Fuzzy Polynomial Neural Networks ; GAs-based FPNN)를 이용하여 비선형 데이터의 최적화 추론 알고리즘을 제안한다. FPNN의 각 노드는 GMDH와 퍼지규칙을 기초로 만들었다. FPNN의 각 노드는 퍼지 다항식 뉴론(Fuzzy Polynomial Neuron : FPN)이라고 표현하다. 제안된 모델은 구조 선택에 있어서 유전자 알고리즘(Genetic Algorithms : GAs)을 이용하였다. 유전자 알고리즘을 사용하여 입력의 차수와 입력의 개수 그리고 후반부 추론의 형태를 최적 선택하였다. 비선형 데이터에 대한 모델 설계를 위해 최적화 알고리즘인 유전자 알고리즘 기반 FPNN 모델 설계가 유용하고 효과적임을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.675-679
/
2020
최근 이미지 분류의 성능 향상을 위해 깊은 레이어와 넓은 채널을 가지는 모델들이 제안되어져 왔다. 높은 분류 정확도를 보이는 모델을 제안하는 것은 과한 컴퓨팅 파워와 계산시간을 요구한다. 본 논문에서는 이미지 분류 기법에서 사용되는 딥 뉴럴 네트워크 모델에 있어, 프루닝 방법을 통해 상대적으로 불필요한 가중치를 제거함과 동시에 분류 정확도 하락을 최소로 하는 동적 필터 프루닝 방법을 제시한다. 원샷 프루닝 기법, 정적 필터 프루닝 기법과 다르게 제거된 가중치에 대해서 소생 기회를 제공함으로써 더 좋은 성능을 보인다. 또한, 재학습이 필요하지 않기 때문에 빠른 계산 속도와 적은 컴퓨팅 파워를 보장한다. ResNet20 에서 CIFAR10 데이터셋에 대하여 실험한 결과 약 50%의 압축률에도 88.74%의 분류 정확도를 보였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.7-14
/
2022
Sensor Registry System (SRS) has been devised for maintaining semantic interoperability of data on heterogeneous sensor networks. SRS measures the connectability of the mobile device to ambient sensors based on positions and only provides metadata of sensors that may be successfully connected. The step of identifying the ambient sensors which can be successfully connected is called sensor filtering. Improving the performance of sensor filtering is one of the core issues of SRS research. In reality, GPS sometimes shows the wrong position and thus leads to failed sensor filtering. Therefore, this paper proposes a new sensor filtering strategy using geographical embedding and neural network-based path prediction. This paper also evaluates the service provision rate with the Monte Carlo approach. The empirical study shows that the proposed method can compensate for position abnormalities and is an effective model for sensor filtering in SRS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.