• Title/Summary/Keyword: 뉴럴네트워크모델

Search Result 128, Processing Time 0.023 seconds

End-to-end Neural Model for Keyphrase Extraction using Twitter Hash-tag Data (트위터 해시 태그를 이용한 End-to-end 뉴럴 모델 기반 키워드 추출)

  • Lee, Young-Hoon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.176-178
    • /
    • 2018
  • 트위터는 최대 140자의 단문을 주고받는 소셜 네트워크 서비스이다. 트위터의 해시 태그는 주로 문장의 핵심 단어나 주요 토픽 등을 링크하게 되는데 본 논문에서는 이러한 정보를 이용하여 키워드 추출에 활용한다. 문장을 Character CNN, Bi-LSTM을 통해 문장 표현을 얻어내고 각 Span에서 이러한 문장 표현을 활용하여 Span 표현을 생성한다. Span 표현을 이용하여 각 Span에 대한 Score를 얻고 높은 점수의 Span을 이용하여 키워드를 추출한다.

  • PDF

Towards General Purpose Korean Paraphrase Sentence Recognition Model (범용의 한국어 패러프레이즈 문장 인식 모델을 위한 연구)

  • Kim, Minho;Hur, Jeong;Lim, Joonho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.450-452
    • /
    • 2021
  • 본 논문은 범용의 한국어 패러프레이즈 문장 인식 모델 개발을 위한 연구를 다룬다. 범용의 목적을 위해서 가장 걸림돌이 되는 부분 중의 하나는 적대적 예제에 대한 강건성이다. 왜냐하면 패러프레이즈 문장 인식에 대한 적대적 예제는 일반 유형의 말뭉치로 학습시킨 인식 모델을 무력화 시킬 수 있기 때문이다. 또한 적대적 예제의 유형이 다양하기 때문에 다양한 유형에 대해서도 대응할 수 있어야 하는 어려운 점이 있다. 본 논문에서는 다양한 적대적 예제 유형과 일반 유형 모두에 대해서 패러프레이즈 문장 여부를 인식할 수 있는 딥 뉴럴 네트워크 모델을 제시하고자 한다.

  • PDF

Target Image Exchange Model for Object Tracking Based on Siamese Network (샴 네트워크 기반 객체 추적을 위한 표적 이미지 교환 모델)

  • Park, Sung-Jun;Kim, Gyu-Min;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.389-395
    • /
    • 2021
  • In this paper, we propose a target image exchange model to improve performance of the object tracking algorithm based on a Siamese network. The object tracking algorithm based on the Siamese network tracks the object by finding the most similar part in the search image using only the target image specified in the first frame of the sequence. Since only the object of the first frame and the search image compare similarity, if tracking fails once, errors accumulate and drift in a part other than the tracked object occurs. Therefore, by designing a CNN(Convolutional Neural Network) based model, we check whether the tracking is progressing well, and the target image exchange timing is defined by using the score output from the Siamese network-based object tracking algorithm. The proposed model is evaluated the performance using the VOT-2018 dataset, and finally achieved an accuracy of 0.611 and a robustness of 22.816.

(Tuning Learning Rate in Neural Network Using Sugeno Fuzzy Model) (Sugeno 퍼지 모델을 이용한 신경망의 학습률 조정)

  • 라혁주;서재용;김성주;전흥태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.77-80
    • /
    • 2003
  • 신경망의 퍼셉트론 학습법에는 이진 또는 연속 활성화 함수가 사용된다. 초기 연결강도는 임의의 값으로 설정하며, 목표치와 실제 출력과의 차이를 이용하는 것이 주된 특징이다. 즉 구해진 오차는 학습률에 따라서 다음 단계의 연결강도에 영향을 주게 된다. 이런 경우 학습률이 너무 크면 수렴성을 보장할 수 없으며, 반대로 너무 작게 선정하면 학습이 매우 느리게 진행되는 단점이 발생한다. 이런 이유로 능동적인 학습률의 변화는 신경망의 퍼셉트론 학습법에 중요한 관건이 리며, 주어진 문제를 최적으로 학습을 위해서는 결국 상황에 따른 적절한 학습률 조정이 필요하다. 본 논문에서는 학습률 조정에 퍼지 모델을 적용하는 신경망 학습 방법을 제안하고자 한다. 제안한 방법에 의한 학습은 오차의 변화에 따라 학습률을 조정하는 방식을 사용하였고, 그 결과 연결강도를 능동적으로 변화시켜 효과적인 학습 결과를 얻었다. 학습률 변화는 'Sugeno 퍼지 모델'을 이용하여 구현하였다.

  • PDF

Adult Image Detection Using Skin Color and Multiple Features (피부색상과 복합 특징을 이용한 유해영상 인식)

  • Jang, Seok-Woo;Choi, Hyung-Il;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.27-35
    • /
    • 2010
  • Extracting skin color is significant in adult image detection. However, conventional methods still have essential problems in extracting skin color. That is, colors of human skins are basically not the same because of individual skin difference or difference races. Moreover, skin regions of images may not have identical color due to makeup, different cameras used, etc. Therefore, most of the existing methods use predefined skin color models. To resolve these problems, in this paper, we propose a new adult image detection method that robustly segments skin areas with an input image-adapted skin color distribution model, and verifies if the segmented skin regions contain naked bodies by fusing several representative features through a neural network scheme. Experimental results show that our method outperforms others through various experiments. We expect that the suggested method will be useful in many applications such as face detection and objectionable image filtering.

Violence Recognition using Deep CNN for Smart Surveillance Applications (스마트 감시 애플리케이션을 위해 Deep CNN을 이용한 폭력인식)

  • Ullah, Fath U Min;Ullah, Amin;Muhammad, Khan;Lee, Mi Young;Baik, Sung Wook
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 2018
  • Due to the recent developments in computer vision technology, complex actions can be recognized with reasonable accuracy in smart cities. In contrast, violence recognition such as events related to fight and knife, has gained less attention. The capability of visual surveillance can be used for detecting fight in streets or in prison centers. In this paper, we proposed a deep learning-based violence recognition method for surveillance cameras. A convolutional neural network (CNN) model is trained and fine-tuned on available benchmark datasets of fights and knives for violence recognition. When an abnormal event is detected, an alarm can be sent to the nearest police station to take immediate action. Moreover, when the probabilities of fight and knife classes are predicted very low, this situation is considered as normal situation. The experimental results of the proposed method outperformed other state-of-the-art CNN models with high margin by achieving maximum 99.21% accuracy.

Neural Nets and Brain Computing (뉴럴 네트워크의 브레인 컴퓨팅)

  • 김응수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.24-26
    • /
    • 1996
  • 뇌는 신경세포로 이루어진 거대한 시스템이다. 이러한 뇌의 특징은 자기조직 시스템이면서 외계의 정보구조에 맞추어서 자신의 능력을 높일 수 있다는 것이다. 또한 뇌는 병렬정보처리 방식을 대폭적으로 채용한 시스템으로서 제어기구가 전체적으로 분산되어 있다. 이러한 뇌의 동작은 구조적으로 안정적이며 그 구성소자가 어느 정도 파괴되더라도 우수한 동작특성을 유지할 수 있다. 이것은 뇌에 있어서 정보가 거시화 및 분산화 되어 있다는 증거이며, 연상기억과 내용 어드레스 기억 등과 같은 탁월한 기억방식을 실현할 뿐만 아니라 망각능력도 가지고 있다. 현실의 뇌 그 자체를 조사하는 것이 어려운 상황에서는 뇌에 관한 여러 가지 모델을 만들고 이 모델을 구체적으로 상세히 조사함으로써 현실의 뇌를 이해하고자하는 방법이 중요시 된다. 본 강연에서는 이러한 구성적 방법론의 필요성 및 뇌의 생리학적 측면, 뇌의 모델로서의 측면 그리고 신경회로망의 발전단계와 뇌 과학의 세계적 연구동향에 관하여 살펴본다.

  • PDF

Optimized Identification of Genetic Algorithms based FPNN and Its Application to Nonlinear Data (진화 알고리즘 기반 FPNN의 최적 동정 및 비선형 데이터로의 응용)

  • Lee In-Tae;Lee Dong-Yoon;Kim Hyun-Ki;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.305-308
    • /
    • 2005
  • 본 논문은 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크(Genetic Algorithm-based Fuzzy Polynomial Neural Networks ; GAs-based FPNN)를 이용하여 비선형 데이터의 최적화 추론 알고리즘을 제안한다. FPNN의 각 노드는 GMDH와 퍼지규칙을 기초로 만들었다. FPNN의 각 노드는 퍼지 다항식 뉴론(Fuzzy Polynomial Neuron : FPN)이라고 표현하다. 제안된 모델은 구조 선택에 있어서 유전자 알고리즘(Genetic Algorithms : GAs)을 이용하였다. 유전자 알고리즘을 사용하여 입력의 차수와 입력의 개수 그리고 후반부 추론의 형태를 최적 선택하였다. 비선형 데이터에 대한 모델 설계를 위해 최적화 알고리즘인 유전자 알고리즘 기반 FPNN 모델 설계가 유용하고 효과적임을 보인다.

  • PDF

Dynamic Filter Pruning for Compression of Deep Neural Network. (동적 필터 프루닝 기법을 이용한 심층 신경망 압축)

  • Cho, InCheon;Bae, SungHo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.675-679
    • /
    • 2020
  • 최근 이미지 분류의 성능 향상을 위해 깊은 레이어와 넓은 채널을 가지는 모델들이 제안되어져 왔다. 높은 분류 정확도를 보이는 모델을 제안하는 것은 과한 컴퓨팅 파워와 계산시간을 요구한다. 본 논문에서는 이미지 분류 기법에서 사용되는 딥 뉴럴 네트워크 모델에 있어, 프루닝 방법을 통해 상대적으로 불필요한 가중치를 제거함과 동시에 분류 정확도 하락을 최소로 하는 동적 필터 프루닝 방법을 제시한다. 원샷 프루닝 기법, 정적 필터 프루닝 기법과 다르게 제거된 가중치에 대해서 소생 기회를 제공함으로써 더 좋은 성능을 보인다. 또한, 재학습이 필요하지 않기 때문에 빠른 계산 속도와 적은 컴퓨팅 파워를 보장한다. ResNet20 에서 CIFAR10 데이터셋에 대하여 실험한 결과 약 50%의 압축률에도 88.74%의 분류 정확도를 보였다.

  • PDF

Improved Sensor Filtering Method for Sensor Registry System (센서 레지스트리 시스템을 위한 개선된 센서 필터링 기법)

  • Chen, Haotian;Jung, Hyunjun;Lee, Sukhoon;On, Byung-Won;Jeong, Dongwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Sensor Registry System (SRS) has been devised for maintaining semantic interoperability of data on heterogeneous sensor networks. SRS measures the connectability of the mobile device to ambient sensors based on positions and only provides metadata of sensors that may be successfully connected. The step of identifying the ambient sensors which can be successfully connected is called sensor filtering. Improving the performance of sensor filtering is one of the core issues of SRS research. In reality, GPS sometimes shows the wrong position and thus leads to failed sensor filtering. Therefore, this paper proposes a new sensor filtering strategy using geographical embedding and neural network-based path prediction. This paper also evaluates the service provision rate with the Monte Carlo approach. The empirical study shows that the proposed method can compensate for position abnormalities and is an effective model for sensor filtering in SRS.