• 제목/요약/키워드: 눈 영상비

검색결과 133건 처리시간 0.031초

눈 영상비를 이용한 운전자 상태 경고 시스템 (A Driver's Condition Warning System using Eye Aspect Ratio)

  • 신문창;이원영
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.349-356
    • /
    • 2020
  • 본 논문은 교통사고 방지를 위한 운전자의 눈 영상비를 이용한 상태 경고시스템의 설계에 대해 소개하고 있다. 제안하는 운전자 상태 경고 시스템은 눈 인식을 위한 카메라, 카메라를 통해 들어오는 정보를 처리하는 라즈베리파이, 그리고 그 정보를 통해 운전자에게 경고를 줄 때 필요한 부저와 진동기로 구성되어 있다. 운전자의 눈을 인식하기 위해서 기울기 방향성 히스토그램 기술과 딥러닝 기반의 얼굴 표지점 추정 기법을 사용하였다. 동작을 시작하면, 시스템은 눈 주변의 6개의 좌표를 통해 눈 영상비를 계산한다. 그리고 눈을 뜬 상태와 감은 상태의 눈 영상비를 각각 계산한 후 이 두 값으로부터 눈의 상태를 판단하는데 사용하는 문턱 값을 설정한다. 문턱 값이 운전자의 눈 크기에 적응하면서 설정되기 때문에 시스템은 최적의 문턱 값을 사용하여 운전자의 상태를 판단할 수 있다. 또한 낮은 조도에서도 눈을 인식할 수 있도록 회색조 변환 이미지와 LAB모델 이미지를 합성하여 사용하였다.

다양한 일기 조건하에서의 차량 추적 (A study on vehicle tracking under various weather conditions)

  • 송홍섭;소영성
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 2003
  • 영상 검지기를 통한 차량 탐지 방법은 날씨와 같은 환경에 민감하게 반응하여 차량의 미탐지 및 오탐지가 발생하게 된다. 이를 해결하기 위해 다양한 일기조건하에서 차량 추적 방법에 대해 제안한다. 다양한 일기 조건하에서의 차량 추적은 눈, 비, 안개 환경에서 각 날씨의 특징을 분석, 반영하여 차량을 탐지하고 추적한다. 눈이 내리는 환경에서는 눈이 카메라 가까이에서 차량 blob으로 잘못 탐지되는 blob을 제거하기 위해 카메라와의 거리에 따른 실제 크기를 구하는 size filtering 방법을 사용한다. 비, 안개 환경에서는 흐릿해진 영상 때문에 차량이 교통신호등에 의해 차량 정체시 여러 차량이 하나의 blob으로 탐지되는 문제점을 해결하기 위해 이전 영상에서의 차량 위치 정보를 이용한 재 blob화 방법을 사용한다.

  • PDF

얼굴 형태 인식을 이용한 자동 홍채 인식 시스템 (Autometic Eye Image Detection for using Face Shape Recognition)

  • 허윤;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.829-831
    • /
    • 2004
  • 다양한 개인 생체 정보 중에서 비교적 높은 인식률과 사용자 편의성을 제공하는 것은 홍채 인식이다. 그러나, 현재의 홍채 인식은 수동 영상 획득 시스템으로 비접촉식이라는 사용자 편의성을 제대로 제공을 못하는 것이 현실이다. 이것은 정밀한 홍채 영상 획득을 위하여 고해상도의 영상 획득 장비의 필요와 정확한 홍채 위치 수적의 어려움으로 인한 문제이다. 본 연구에서는 24bit 칼라 영상을 이용한 사랑의 얼굴 형태의 인식과 인식된 얼굴 형태에서의 눈 영역 추적 확대를 통한 실시간 자동 홍채 인식 시스템을 제안하였다. 제안된 시스템에서 얼굴의 피부색을 이용한 얼굴 인식 방법이외에 윤곽선 검출 정보를 이용한 기울기 보정과 눈 영역 검출을 실행하여, 이를 이용하여 눈 영역 추적과 확대를 실행을 한다. 그 다음 과정으로 눈 영역 영상에서 동공 중심을 획득하여 그 중심을 이은 선분으로 기준선을 잡아 홍채를 획득하는 과정으로 이루어지게 된다.

  • PDF

블록단위 영역분할을 이용한 얼굴 특징 요소 추출 (Extraction of Facial Feature Component using Section Segmentation of Block-units)

  • 김승업;이우범;김욱현
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

동적 모델을 이용한 얼굴 영상에서의 관심 영역 추출 (Region-of-Interest Detection from a Facial Image Using Active Model)

  • 이형일;김경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.343-345
    • /
    • 2001
  • 본 논문에서는 얼굴 인식 시스템에서 정면 얼굴 영상의 관심 영역을 추출하는 효율적인 방법을 소개한다. 얼굴 인식 시스템은 얼굴 요소의 특징 을 이용하여 자동으로 얼굴을 구별하는 시스템이며, 얼굴 요소로는 눈, 코, 입과 눈썹을 주로 사용한다. 본 논문에서는 동적 모델을 이용하여 눈과 입을 관심영역으로 하여 이 영역을 세 단계로 나누어 추출한다. 첫 번째로 전체 얼굴 모델을 이용하여 similarity 변환을 적용하여 얼굴의 대략적인 위치를 찾는다. 두 번째 단계에서는 얼굴 근처에서 각각의 눈, 입 모델을 비선형 변환을 적용하여 정확한 눈과 입을 찾는다. 최종 단계에서는 이렇게 맞춘 모델로부터 전체 모델을 변형시킨 후에 변형전과 후의 적합성을 판단하여 최종 위치를 정한다. 제안한 알고리즘을 130명의 영상에 대하여 적용한 결과 눈을 정확하게 추출한 경우는 120명이고, 입을 정확히 추출한 경우는 119명이었다. 본 논문에서 제안하는 관심 영역 추출 방법은 일반적인 모델 방법에 특정 목적에 적합한 모델을 혼합한 방법으로 일반적인 모델만을 적용한 방법과 프로젝션 분석 등의 특정 목적만을 위한 방법보다 좋은 결과를 얻을 수 있었다.

  • PDF

휴대폰에서 눈 영역 검출 연구 (A Study on Eyes Region Detection on a Mobile Phone)

  • 박현애;박강령
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.789-792
    • /
    • 2005
  • 최근 급격히 발전한 휴대폰은 다양한 기능을 가지고 있다. 그 중 디지털 카메라의 기능을 겸비한 휴대폰은 디지털 카메라의 판매량을 앞서고 있고, 메가픽셀의 고화소 디카폰의 개발로 대중화가 더욱 가속화되고 있다. 카메라폰을 응용한 연구분야로는 생체인식기술을 적용할 수 있으며, 본 논문은 제약이 많은 휴대폰 환경에서 홍채인식기술을 적용하기 위한 휴대폰 카메라로 취득된 얼굴영상에서의 눈 영역을 검출하는 방법을 제안한다. 얼굴영상에서 눈은 피부나 머리카락보다 빛에 대한 반사율이 높아 각막에 specular reflection이 생기게 되고, 동공은 눈의 다른 지역에 비해 흑화소가 많다는 특징을 가지고 있다. 이러한 두 가지 특징을 이용하여 동공 후보 영역을 선정하였고, 선정된 이진영상에서 수평 프로파일과 수직 프로파일을 적용하여 동공 후보 영역을 줄이면서 동공의 중심 위치를 검출한다. 본 연구는 휴대폰 환경을 고려하였기 때문에 최소한의 메모리 사용과 적은 연산량을 목표로 하여 눈의 위치를 검출 한다. 실험 결과, 입력 영상 내에 일정크기의 동공영역이 존재할 경우 높은 눈 영역 추출 성공률을 보이며, 본 연구에서 제안한 알고리즘을 실제 휴대폰에서 수행한 결과 평균571.6ms의 시간이 소요됨을 알 수 있었다.

  • PDF

얼굴 표정 인식 시스템을 위한 얼굴 영역 추출 (Face Region Extraction for the Facial Expression Recognition System)

  • 임주혁;송근원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.903-906
    • /
    • 2004
  • 본 논문에서는 얼굴 표정 인식 시스템을 위한 얼굴 영역 추출 알고리즘을 제안한다. 이는 입력 영상으로부터 얼굴 후보 영역을 추출하고, 추출된 얼굴 후보 영역에서 눈의 위치를 정확히 추출한다. 그리고 추출된 눈 영역들의 정보와 타원 방정식을 이용하여 최종 얼굴 영역을 추출한다. 얼굴 후보 영역은 HSI 칼라 좌표계에 기반한 적응적 피부색 구간 범위를 설정하여 추출하였다. 추출된 얼굴 후보 영역에서의 눈 영역 추출을 위해 밝기 정보를 이용하여 먼저 눈의 후보 화소들을 추출하고, 레이블링 과정을 통하여 영역별로 그룹화하였다. 각 후보 영역들의 화소 수, 가로세로비 및 위치 정보를 고려하여 최종 눈 영역을 추출하였다. 추출된 두 눈 영역에서 무게중심을 구하고 이를 이용하여 장축과 단축을 설정하여 타원방정식을 이용 최종 얼굴 영역을 추출하였다. 제안된 알고리즘은 조명 변화, 다양한 배경들을 가지는 얼굴 영상에서도 정확히 얼굴 영역을 추출할 수 있었다.

  • PDF

도로 주행 영상을 위한 안개 제거 기법 (Dehazing Algorithm for Road Driving Images)

  • 최광연;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.169-171
    • /
    • 2016
  • 본 논문에서는 일반 자연 영상에서 주로 적용되어 왔던 안개 제거 기법을 기반으로 하여 악천후 상황의 도로 주행 영상을 개선하는 방법을 제안한다. 악천후 상황이란 안개가 있거나 비, 눈이 오는 상황을 의미한다. 도로를 주행하는 환경에서는 비나 눈이 오는 경우에도 안개가 있는 상황과 비슷하기 때문에 안개 제거 기법을 기반으로 하여 악천후 환경의 영상을 개선한다. 우선 최신의 안개 제거 기법 중 하나인 non-local prior 기반의 기법을 도로 주행 영상에 적용 하였을 경우 문제점이 발생하게 되는데 그에 대한 원인을 분석한다. 그리고 이러한 문제점을 해결하기 위하여 예상된 전달량을 보정한다. 모의 실험을 통해 제안하는 방법을 적용하여 도로 주행 영상에서 발생한 문제점을 완화하고 악천후 상황이 개선된 결과를 얻었다.

  • PDF

스네이크 알고리즘에 의한 CCD 카메라 영상에서의 얼굴 및 얼굴 요소 추출 (Pace and Facial Element Extraction in CCD-Camera Images by using Snake Algorithm)

  • 판데홍;김영원;김정연;전병환
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.535-542
    • /
    • 2002
  • 최근 IT 산업이 급성장하면서 화상 회의, 게임, 채팅 등에서의 아바타(avatar) 제어를 위한 자연스러운 인터페이스 기술이 요구되고 있다. 본 논문에서는 동적 윤곽선 모델(active contour models; snakes)을 이용하여 복잡한 배경이 있는 컬러 CCD 카메라 영상에서 얼굴과 눈, 입, 눈썹, 코 등의 얼굴 요소에 대해 윤곽선을 추출하거나 위치를 파악하는 방법을 제안한다. 일반적으로 스네이크 알고리즘은 잡음에 민감하고 초기 모델을 어떻게 설정하는가에 따라 추출 성능이 크게 좌우되기 때문에 주로 단순한 배경의 영상에서 정면 얼굴의 추출에 사용되어왔다 본 연구에서는 이러한 단점을 파악하기 위해, 먼저 YIQ 색상 모델의 I 성분을 이용한 색상 정보와 차 영상 정보를 사용하여 얼굴의 최소 포함 사각형(minimum enclosing rectangle; MER)을 찾고, 이 얼굴 영역 내에서 기하학적인 위치 정보와 에지 정보를 이용하여 눈, 입, 눈썹, 코의 MER을 설정한다. 그런 다음, 각 요소의 MER 내에서 1차 미분과 2차 미분에 근거한 내부 에너지와 에지에 기반한 영상 에너지를 이용한 스네이크 알고리즘을 적용한다. 이때, 에지 영상에서 얼굴 주변의 복잡한 잡음을 제거하기 위하여 색상 정보 영상과 차 영상에 각각 모폴로지(morphology)의 팽창(dilation) 연산을 적용하고 이들의 AND 결합 영상에 팽창 연산을 다시 적용한 이진 영상을 필터로 사용한다. 총 7명으로부터 양 눈이 보이는 정면 유사 방향의 영상을 20장씩 취득하여 총 140장에 대해 실험한 결과, MER의 오차율은 얼굴, 눈, 입에 대해 각각 6.2%, 11.2%, 9.4%로 나타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of

  • PDF

눈 윤곽선과 눈동자 영역 추출 기반 시선 추정 알고리즘의 설계 및 구현 (Design and Implementation of Eye-Gaze Estimation Algorithm based on Extraction of Eye Contour and Pupil Region)

  • 염효섭;홍민;최유주
    • 컴퓨터교육학회논문지
    • /
    • 제17권2호
    • /
    • pp.107-113
    • /
    • 2014
  • 본 연구에서는 입력 얼굴 영상에서 눈의 윤곽선과 눈동자 영역을 추출하여 시선을 추정하는 시스템을 설계 및 구현한다. 눈 윤곽선과 눈동자 영역을 효율적으로 추출하기 위하여 먼저 입력 영상으로부터 얼굴 영역을 추출한다. 얼굴 영역 추출을 위하여 아시아인 얼굴 영상 셋을 확보하여 아시아인 피부색에 대한 YCbCr 범위를 사전에 정의하였고, 정의된 피부색 범위값에 따라 피부영역을 검출한다. 최대크기 피부 영역을 얼굴후보 영역으로 지정하고 검출된 얼굴 후보영역에 대한 상위 50%의 관심 영역 내에서 눈윤곽선과 색상 특성 분석을 이용한 눈 영역 검출 알고리즘을 수행하여 기존의 Haar-like feature 특성기반 눈 영역 검출방법에 비해 타이트한 눈 영역을 검출한다. 눈의 윤곽선을 포함하는 관심영역 전체를 기준으로 눈 영역을 3등분하고, 추출된 눈동자의 위치가 3등분된 영역에서 어느 영역에 중점적으로 위치하고 있는지를 분석하여 좌, 우, 정면 시선 방향을 추정한다. 본 연구에서는 20명의 실험자에 대한 5,616 장의 테스트 영상을 이용한 시선방향 추정 실험에서 약 91%의 정확도를 획득한다.

  • PDF