눈좌표 검출은 얼굴 인식 및 관련된 응용 분야 등에서 필요한 작업이다. 현재까지 보고된 대부분의 눈좌표 검출 방법은 성공적인 적용을 위해서는 여전히 정확도 및 검출 속도의 개선을 필요로 한다. 본 논문에서는 다중스케일 가버 특징 벡터 모델 기반의 개선된 눈좌표 검출 방법을 제안한다. 제안된 방법은 먼저 다운샘플링된 입력 얼굴 이미지에서 초기 눈좌표에서의 가버 특징 벡터와 해당 스케일의 눈 모델 번치와의 가버젯 유사도를 이용하여 눈좌표를 추정한다. 이후 추정된 눈좌표를 상위 스케일의 얼굴 이미지에서의 눈좌표 초기값으로 취하고 상위 스케일 얼굴 이미지에서 같은 방법으로 눈좌표를 찾으며, 이를 반복적으로 하여 최종적으로 원래 얼굴 이미지에서의 눈좌표를 확정한다. 실험을 통해, 본 논문에서 제안한 다중스케일 가버 특징 벡터 모델 기반 눈좌표 검출 방법이 계산량은 크게 증가시키지 않으면서 기존 연구들에서 보고된 다른 눈좌표 검출 방법에 비해 정확도가 개선된 검출 방법임을 확인하였다.
본 논문에서는, 눈 검출에서의 픽셀 선택 방법을 이용한 편향 판별 분석(BDA) 기반의 신뢰 척도를 제안하고 이를 이용하여 hybrid 눈 검출기를 설계한다. 이를 위해 눈 조각 영상에서 먼저 판별 분석에 유용한 픽셀들을 선택하여 부분 영상을 만들고, 부분 영상에 BDA를 적용하여 신뢰 척도를 위한 특징 공간을 구성한다. Hybrid 눈 검출기를 구성하는 기본 검출기로는 상호 보완적인 특성을 가진 HFED와 MFED를 사용하였다. 주어진 영상에 대해, 기본 검출기들에 의해 생성된 눈 좌표를 가지고 생성한 눈 조각 영상의 부분 영상들을 BDA 특징공간에 투영하여 positive 샘플의 평균과의 거리를 측정함으로써 그 정확성을 측정하고, 기본 검출기의 결과들 중에서 신뢰도가 높은 결과를 최종 눈 검출 결과로 사용한다. 다양한 얼굴 데이터베이스들에 대한 실험 결과에서, 제안한 방법은 검출된 눈 좌표의 정확도 측면에서 뿐만 아니라 검출된 눈 좌표를 이용한 얼굴 인식 성능에서도 다른 방법들보다 우수한 결과를 나타내었다.
본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network[1]를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하고 이를 통해 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes[2] 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze[3] 데이터 셋을 이용하였다. 실험을 통해 시선 추정 오차는 0.0396 MSE(Mean Square Error)의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame Per Second)를 나타내었다.
본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.
본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분(Part)으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하여 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze 데이터셋을 이용하였다. 실험을 통해 시선 추정 오차는 3.9°의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame per second)로 측정되었다.
본 논문에서는 입력 영상의 컬러 정보를 이용함으로써 조명 변화나 얼굴의 자세 변화에 둔감하게 얼굴 정보를 고속 검출하는 알고리듬을 제안하였다 계산복잡도가 작으면서도, 조명의 변화에 민감하지 않은 특성을 가진 NCC (normalized color component) 좌표계에서 정의한 살색에 기반하여 얼굴 후보 영역을 검출하고, 검출된 얼굴 후보 영역 내에서의 눈의 검출에도 색상 분포 특성을 이용함으로써 얼굴의 숙임(nod), 돌림(shake), 기울임(tilt)등에 의한 자세 변화에 대해서도 둔감하게 두 눈의 위치를 고속으로 찾도록 하였다. 특히 집중자(concentrator)를 제안 적용하여 유동적인 눈썹의 영향을 줄이고 눈안의 중심 위치를 찾도록 가중치 눈지도(eye map)를 도입하였다. 제안된 알고리듬이 조명 변화나 얼굴의 다양한 자세 변화가 있는 영상에서 얼굴 후보 영역과 두 눈의 위치를 효과적으로 검출함을 실험을 통해 확인하였다.
현재 홍채 인식은 주로 수동형 영상 획득 시스템을 통한 홍채 획득이 주를 이루고 있다. 이는 장비가 고가인 점과 정확한 홍채 위치추적의 어려움 등의 문제로 인한 것이다. 본 연구에서는 24bit 칼라 영상에서 피부색 정보와 윤곽선 검출 정보를 이용한 실시간 자동 홍채 인식 시스템을 제안하였다. 제안한 방법에서는 HSI 칼라 좌표계상에서의 얼굴 피부색 인식 외에 조명으로 인한 잡음을 제거 하였고, 배경과 사용자의 보다 정확한 영역 분리를 위하여 영상을 이진화한 후 윤곽선 영역을 다시 한 번 제거 한 후 레이블링을 실행 하였다. 또한, 보다 정확한 눈 영역 추출을 위하여 일정 크기까지의 줌을 한 후 윤곽선 검출을 사용하였다. 이러한 방법들을 통하여, 주위 환경에 영향을 덜 받으면서 보다 정확한 눈 영역을 추출 할 수 있었다.
얼굴영상을 효율적으로 처리하기 위해선 먼저 입력영상에서 얼굴영역과 얼굴을 구성하는 각 기관을 검출하는 전처리과정이 필요하다. 본 논문에서는 얼굴의 크기와 얼굴의 회전, 조영의 변화가 어느 정도 허용되고 피부색 배경이 얼굴에 병합된 경우에도 얼굴영역과 얼굴기관(눈, 입)을 강건하게 검출할 수 있는 방법으로, 입력영상에 따른 적응적 칼라 색상정보와 얼굴기관의 부분 템플릿매칭을 조합한 알고리즘을 제안한다. 변환된 HSV 칼라 좌표계상의 대역적 피부색상 정보와 히스토그램을 이용한 적응적 피부색상 정보로 얼굴영역을 검출한 뒤, 얼굴영역 안에서 입술색상 정보로 도출된 입술영역의 X축 기울기를 이용해 회전얼굴을 보정하고, 양안의 조합으로 이루어진 부분 템플릿을 이용해 눈을 검출한다.
본 논문에서는 스테레오 영상의 정합을 통한 얼굴의 굴곡 특징과 좌표 정보로서 정지 영상에서 생기는 제약 조건의 약화와 굴곡 특징을 이용하여 보다 강건한 얼굴 특징 추출 알고리즘을 제안한다. 얼굴 인식 기술은 정지 영상을 통한 얼굴 영역의 특징들로 얼굴을 구별하고, 얼굴을 검색하기 위하여 다양한 특징을 추출하는데 정지 영상에서는 추출할 수 없는 좌표 정보를 이용한 눈, 코, 입의 정보들과 굴곡 정보를 이용함으로서 얼굴 인식의 효율성을 높이는데 있다. 제안된 알고리즘의 단계는 색상으로부터의 얼굴 영역 검출 단계 얼굴 특징의 추출을 위한 전처리 단계, 눈, 코, 입에 대한 특징 정보로서 사람의 판별 유무와 찾아진 얼굴 영역에 눈 템플릿을 적용하고, 눈 사이의 거리와 기울어짐 코와 입에 대한 거리 정보들로서 스테레오 영상의 굴곡 특징 정보를 추출하는 단계로 이루어져 있다. 또한, 기존의 특징 정보뿐만 아니라 스테레오 영상의 정합을 통한 굴곡 특징 정보를 사용 각각 영상의 종류에 대해서 100%, 93%, 76%의 인식률을 얻었으며 평균 90%로서 정지 영상과의 비교를 통해 8%의 인식률의 향상으로 본 연구의 유효성을 입증하였다.
본 논문에서는 실시간 출입통제시스템에 적용이 가긍한 복잡한 배경에서의 다중 얼굴 영역 검출과 추적을 통한 얼굴 인식 알고리즘을 제안하였다. 제안된 알고리즘에서는 배경영상과 입력된 연속적인 프레임간의 차영상을 적용함으로써 물체의 움직임을 감지한 후. IISI컬러 좌표모델을 이용하여 얼굴의 1차 후보 영역을 검출하고, 잡음제거를 위해 모폴로지 연산을 수행하였다 또한 Line Projection을 이용한 객체 분할법(Object Segmentation)으로 객체를 분할함으로써 다중 얼굴 영역을 추출하였다. 또한 추출된 얼굴영역에서 눈 영역 검출을 통해 각각의 얼굴 영역들을 검증하였으며 검증된 얼굴들의 최외각 4개의 좌표를 이용하여 얼굴 추적율을 높였다. 마지막으로 얼굴 인식은 추출된 얼굴 영역으로부터 주성분 분석(PCA : Principle Component Analysis)방법을 이용함으로써 97~98%의 높은 인식율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.