• Title/Summary/Keyword: 누적 손상률

Search Result 23, Processing Time 0.019 seconds

A Study on the Damage of Steel Square Tubular Columns under Cyclic Loading (반복재하를 받는 각형강관기둥의 손상에 관한 연구)

  • Park, Yeon Soo;Jeon, Dong Ho;Suh, Byoung Chal;Kim, Wook;Choi, Dong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.369-378
    • /
    • 2003
  • This study proposed a damage index for steel members and examined a process where steel square tubular columns under cycle loading failed to meet the damage index. A nonlinear analysis was carried out and a damage process analyzed using a finite element program. Material properties and strain characteristics were obtained from material testing. The effect on the damage of members was analyzed according to varying kinds of steels and conditions of loading based on material testing results. According to strain characteristics and cumulative plastic strain of each variable, the effect of conditions of loading and kinds of steels on the damage could be estimated quantitatively.

Prognostic Technique for Pump Cavitation Erosion (펌프 캐비테이션 침식 예측진단)

  • Lee, Do Hwan;Kang, Shin Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1021-1027
    • /
    • 2013
  • In this study, a prognostic technique for cavitation erosion that is applicable to centrifugal pumps is devised. To estimate the erosion states of pumps, damage rates are calculated based on cavitation noise measurements. The accumulated damage is predicted by using Miner's rule and the estimated damage undergone when coping with particular operating conditions. The remaining useful life (RUL) of the pump impellers is estimated according to the accumulated damage prediction and based on the assumption of future operating conditions. A Monte Carlo simulation is applied to obtain a prognostic uncertainty. The comparison of the prediction and the test results demonstrates that the developed method can be applied to predict cavitation erosion states and RUL estimates.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.

Strain-Based Structural Integrity Evaluation Methods for Nuclear Power Plant Piping under Beyond Design Basis Earthquake (설계기준초과지진 하의 원전 배관 구조건전성 평가를 위한 변형률 기반 방법)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Ryu, Ho Wan;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.66-70
    • /
    • 2016
  • Following the 2011 Fukushima Nuclear Power Plant accident, the IAEA has issued a revised version of the Nuclear Safety Standard for beyond design basis earthquake to consider the core meltdown accident. In Korea, relevant laws and regulations were also revised to consider beyond design basis earthquake to nuclear components. In this paper, CAV, an seismic damage factor that determines the restart of nuclear power plant after operating breakdown earthquake, is proposed for extension to the beyond design basis earthquake. For pipings not satisfying the beyond design basis earthquake condition, several evaluation methods are suggested, such as strain-based evaluation methods, simple nonlinear analysis method and cumulative damage evaluation method.

Evaluation of Healing Properties of Asphalt Mixtures (아스팔트 혼합물의 손상회복 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.69-76
    • /
    • 2005
  • While the repeated traffic loading accumulates the damage of asphalt pavement, the damage has being healed during rest periods. And then, this healing enhances the fatigue life of asphalt pavement. A method was developed to determine the healing rate of asphalt mixture in terms of recovered dissipated creep strain energy (DCSE) per unit time, and the healing properties of four different asphalt mixtures were evaluated. The test procedure consists of repeated loading test and periodical resilient modulus tests. A normalized healing rate in terms of $DCSE/DCSE_{applied}$ was defined to evaluate the healing properties independently of the amount of damage incurred in the mixture. From the test results, it was concluded that the healing rates of asphalt mixtures were increased exponentially as the temperature was increased and more affected by the structural characteristics of mixture such as asphalt content than the binder characteristics such as the polymer modification.

  • PDF

A Study on Fatigue Crack Propagation Analysis and Fatigue Strength Evaluation for Bulk Carrier (살물선의 피로균열 전파해석과 피로강도 평가에 대한 연구)

  • 엄동석;김충희
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.112-124
    • /
    • 1993
  • It has been reported that fatigue damage sometimes occurred at the stress concentrated and dynamic loaded structural members of bulk carrier. In this paper, studies on fatigue strength of hull structures are reviewed, and the program for evaluating fatigue strength is developed. And the fatigue crack initiation and propagation on the end part of cargo hold frame of bulk carrier were calculated by FEM stress analysis and the fatigue strength evaluation program. These method can be applied not only to the crack initiation life but also to crack propagation life for the hull structural members at the hull design stage and be effective as the guideline to prevent the crack initiation or to estimate the fatigue strength for repairing of the fatigue damaged structures of real ships.

  • PDF

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Ductile Failure Simulation of Tensile Plates with Multiple Through-Wall Cracks Based on Damage Mechanics (유한요소 손상 해석을 이용한 다중 관통균열 인장시편의 연성 파괴 시뮬레이션)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.245-252
    • /
    • 2012
  • This paper proposes a simple numerical method, based on the stress-modified fracture strain-damage model with the stress-reduction technique, for predicting the failure behaviors of ductile plates with multiple through-wall cracks. This technique is implemented using the user-defined subroutines provided in ABAQUS. For validation, the results simulated using the proposed method are compared with published experimental data of Japanese researchers.

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.