• Title/Summary/Keyword: 누설자속탐상

Search Result 28, Processing Time 0.026 seconds

Performance Comparison of Pipeline Defects' Length Estimation Using MFL Signals (자기 누설 신호를 이용한 배관 결함의 길이 추정 성능 비교)

  • Kim, Tae-Wook;Rho, Yong-Woo;Choi, Doo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • MFL(magnetic flux leakage) inspection is a general method of non-destructive evaluation(NDE) of underground gas pipelines. Pipelines are magnetized by permanent magnets when MFL PIG(pipeline inspection gauge) gets through them. If defects or corrosions exist in pipelines, effective thickness is changed and thus variation of leakage flux occurs. The leakage flux signals detected by hall-sensors are analyzed to characterize defect's geometries such as length, width, depth, and so on. This paper presents several methods for estimating defect's length using MFL signals and their performances are compared for real defects carved in KOGAS pipeline simulation facility. It is found that 80% and 90% of minimum values for axial and peak values for radial signals respectively show the best performance in the point of length estimation error.

Research of corrosion decision on a region weld in MFL system (자기 누설 탐상 시스템에서 용접부위에서의 부식 판정에 관한 연구)

  • Jeong, Hyun-Won;Seo, Kang;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.978-980
    • /
    • 2005
  • 자기 누설 탐상(Magnetic Flux Leakage : MFL) 시스템은 비파괴 검사의 한 방법으로 검사 대상 물체를 적절히 포화시켜 부식이나 결함 부위에서의 누설 자속을 측정하여 결함의 유 무와 크기를 판단하는 방법이다. 대부분 가스관과 가스관을 연결하는 방법으로 용접을 가장 많이 사용하고 있으며 용접부위에서 부식이 가장 많이 발생하고 있다. 용접으로 인해 발생하는 자기 누설신호는 부식신호에 많은 영향을 미친다. 따라서 본 연구는 용접신호가 부식 신호에 미치는 영향을 분석하기 위해 가스관의 용접과 부식과의 거리에 따른 자기누설을 해석하고, 분석하였다. 또한 용접에 의해 왜곡된 부식신호를 보정하고, 판정을 위한 방법을 제시하였다.

  • PDF

Nondestructive Testing of Welding Flaw at Gas Pipeline by Measuring Magnetic Flux Leakage (누설자속 측정에 의한 가스배관의 용접결함에 대한 비파괴 탐상)

  • Ryu, Kwon-Sang;Park, Soo-Yung;Kim, Yong-Il;Lee, Wan-Kyu;Lim, Jae-Kyun;Nam, Young-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • We have developed a system for nondestructive measurement of the magnetic flux leakage at welding flaws, existing in a gas pipeline by Hall sensor. For measuring the magnetic flux leakage, we designed a reference specimen having four kinds of welding flaws. Magnetic flux leakage is measured around the welding flaws of the specimen. The possibility for classification of different kinds of welding flaws is carried out by means of the peak-peak value and the interval between peak-peak of the magnetic flux leakage.

  • PDF

Improvement in Probability of Detection for Leakage Magnetic Flux Methods (누설자속탐상법의 결함검출능력 향상에 관한 연구)

  • Lee, Jin-Yi
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.13-18
    • /
    • 2004
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. Leakage magnetic flux near the crack on the specimen could be amplified by 3-dimensional magnetic fluid and zoom in and out of measurement area. This study introduces the experimental consideration of the effects of lens for concentrating of magnetic flux. The experimental results showed that the magnetic fluid has sufficient lens effect for magnetic camera and effect of improvement in probability of detection.

  • PDF

A Study on Determining the Shape of Small Axial Cracks by using Magnetic Flux Leakage in NDT System for Underground Pipe (배관용 자기누설 비파괴 검사에서 축방향 미소결함의 형상 판정에 관한 연구)

  • Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • MFL PIG (Magnetic Flux Leakage Pipeline Inspection Gauge) is called the system which detects the defect for underground pipelines by using magnetic flux leakage method in nondestructive testing. This method is very suitable for testing pipelines because pipeline has high magnetic permeability. MFL PIG generates the magnetic fields to the pipe axially oriented, and detect the signal of leakage flux by using hall sensor. However, MFL PIG is hard to detect the axially oriented crack with small size because the magnetic flux leakage is not enough to be occurred. To detect the small size and axially oriented crack, the circumferential MFL (CMFL) PIG is being proposed and it can maximize the leakage flux for the axial crack by performing magnetic fields circumferentially on the pipe. In this paper, CMFL PIG is applied to detect the axially oriented crack with small size and the analysis for the distribution and the amplitude of the leakage flux signal is performed by using three dimensional finite element method. From sensing signals, the method how to determine the shape of axially oriented cracks is proposed and verified with experiment.

Dry Magnetic Particle Inspection of Ingot Cast Billets (강편 빌레트의 건식 자분 탐상)

  • Kim, Goo-Hwa;Lim, Zhong-Soo;Lee, Eui-Wan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.162-173
    • /
    • 1996
  • Dry magnetic particle inspection(MPI) was performed to detect the surface defects of steel ingot cast billets. Magnetic properties of several materials were characterized by the measurement of the B-H hysteresis curve. The inspection results were evaluated in terms of the magnetizing current, temperature, and the amount of magnetic particles applied to billets. Magnetic flux leakage near the defect site of interest was measured and compared with the results of calculation by the finite element method in the case of direct magnetizing current. Direct and alternating magnetizing currents for materials were deduced by the comparison of the inspections. Results of the magnetic particle inspection by direct magnetizing current were compared with those of finite element method calculations, which were verified by measuring magnetic leakage flux above the surface and the surface defects of the material. For square rods, due to the geometrical effect, the magnetic flux density at the edges along the length of the rods was about 30% of that at the center of rod face for a sufficiently large direct magnetizing current, while it was about 70% for an alternating magnetizing current. Thus, an alternating magnetizing current generates rather uniform magnetic flux density over the rods, except for the region on the face across about 10 mm from the edge. The attraction of the magnetic particle by the magnetic leakage field was nearly independent of the surface temperature of the billets up to $150^{\circ}C$. However, the temperature should have been limited below $60^{\circ}C$ for an effective fixing of gathered magnetic particles to the billet surface using methylene chloride. We also found that the amount of applied magnetic particles tremendously affected the detection capability.

  • PDF

A Magnetic Flux Leakage Analysis of Metal Object for Underground Gas Pipeline (누설자속을 이용한 지하가스관 외부 금속물체의 자기신호 해석)

  • Kim, Chul;Ha, Jung-Woo;Kim, Han-Deul;Shin, Pan-Seok;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.111-113
    • /
    • 2005
  • 지하에 매설된 가스관의 경우 MFL(Magnetic Fluk Leakage, 자기누설탐상) PIG를 이용하여 금속관의 여러 가지 기계적인 손상을 감지하여 사고예방이나 유지관리의 정보로 활용하고 있다. 이러한 비파피검사는 당장 수리가 필요한 손상에서부터 장래에 위협이 될 수도 있는 지하 매설관 외부의 금속물체(Metal object)까지 찾아낼 수 있어야 한다. 이 논문은 지하 매설관 외부의 금속물체의 크기, 모양 및 이격거리 등에 따른 자기누설 신호를 유한요소법을 이용하여 simulation 하고, MFL PIG를 이용하여 지하 매설관에 대한 비파괴검사를 할 경우 나타나는 여러 가지 자기적 신호를 보정하여 metal object의 크기나 위치 등을 판별할 수 있도록 기본적인 자기누설 정보를 제공하기 위한 연구이다. NMFL PIG의 형상과 금속물체의 크기 종류 의 정확한 분석을 위하여 3차원 해석을 하였다.

  • PDF

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array (복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사)

  • Jun, Jong-Woo;Lee, Jin-Yi;Park, Duk-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.375-382
    • /
    • 2007
  • Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.

Effect of the PIG Moving on the Defect Signals in MFL NDT System (자기 누설 비파괴 탐상 시스팀에서 PIG의 이동이 검출신호에 미치는 영향)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.879-881
    • /
    • 2002
  • 배관의 PIG시스템은 비파괴검사로써 배관내부에 삽입되어 내부 매체에 의하여 추진되는 장치로서 영구자석을 이용한 자기회로를 형성하여 결함이 있을 때 누선자속을 검출하여 이를 해석하여 배관내의 결함의 크기와 깊이를 검출할 수 있다. 그러나 실제 검출신호는 PIG가 이동시 이동속도에 따른 와전류 문제와 가스관의 착자에 따른 히스테리시스특성에 따른 신호들이 실제 결함에 의한 신호를 왜곡시키게 된다. 본 연구에서는 PIG 의 이동에 따른 이동속도에 따른 와전류 문제와 히스테리시스특성이 검출신호를 왜곡하는 현상에 대하여 연구 하였다.

  • PDF