• Title/Summary/Keyword: 뇌 기반 학습

Search Result 79, Processing Time 0.034 seconds

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.37-44
    • /
    • 2021
  • Automatic classification of brain MRI images play an important role in early diagnosis of brain tumors. In this work, we present a deep learning-based brain tumor classification model in MRI images using ensemble of deep features. In our proposed framework, three different deep features from brain MR image are extracted using three different pre-trained models. After that, the extracted deep features are fed to the classification module. In the classification module, the three different deep features are first fed into the fully-connected layers individually to reduce the dimension of the features. After that, the output features from the fully-connected layers are concatenated and fed into the fully-connected layer to predict the final output. To evaluate our proposed model, we use openly accessible brain MRI dataset from web. Experimental results show that our proposed model outperforms other machine learning-based models.

Applying Brain-Compatible Learning Principles to a University Programming Class (대학 프로그래밍 수업에 뇌-친화적 학습 원리의 적용)

  • Choi, Sook-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.635-637
    • /
    • 2017
  • The perception that programming is difficult is spread among learners. Indeed, in college education, the dropout rate of programming classes is higher than in other courses. Therefore, it is necessary to analyze the cognitive aspects of why learners think programming is difficult and then to propose appropriate teaching strategies for them. Recently, studies are under way to understand how the brain learns and is most effective in what situations, based on the development of brain science. This is the study of brain-compatible learning. The purpose of this study is to propose an instructional design on programming lessons based on brain-compatible learning principles.

  • PDF

Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods (딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰)

  • Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.137-142
    • /
    • 2024
  • Recently, deep learning technology has become those methods as de facto standards in the area of medical data representation. But, deep learning inherently requires a large amount of training data, which poses a challenge for its direct application in the medical field where acquiring large-scale data is not straightforward. Additionally, brain signal modalities also suffer from these problems owing to the high variability. Research has focused on designing deep neural network structures capable of effectively extracting spectro-spatio-temporal characteristics of brain signals, or employing self-supervised learning methods to pre-learn the neurophysiological features of brain signals. This paper analyzes methodologies used to handle small-scale data in emerging fields such as brain-computer interfaces and brain signal-based state prediction, presenting future directions for these technologies. At first, this paper examines deep neural network structures for representing brain signals, then analyzes self-supervised learning methodologies aimed at efficiently learning the characteristics of brain signals. Finally, the paper discusses key insights and future directions for deep learning-based brain signal analysis.

A Study on the Brain Scientific Mechanism of Drawing Education - Focusing on the Animated Drawing (드로잉 교육의 뇌과학적 기제 연구 - 애니메이션 드로잉을 중심으로)

  • Park, Sung Won
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.217-236
    • /
    • 2014
  • This study is a literature analytical process for studying the drawing teaching methods considering the professional characteristics of animation and a principle analytical process for studying the perspective that when teaching methods that consider the function, learning and creative mechanisms of the brain are applied, the animation drawing ability will be effectively increased. In recent years, as an alternative discussion on the educational method of each field, study results applied with brain-based learning principles are being presented. This is not only being applied and implemented for art and drawing education but as overall educational alternatives. On the other hand, animation drawing requires artistic literacy and at the same time requires comprehensive teaching methods that can train the structural knowledge, cognitive sensation and communication method but such professional teaching methods are insufficient. Therefore, the principle of effective education is seen through the brain mechanism and the principle of demonstrating the creativity and learning by the brain is analyzed. In addition, through the fundamental relationship on the picture drawing and the function of the brain, the relationship of the drawing and the brain is identified. As a result, not only for the left brain that observes the cognitive information which can draw the structure and shapes but the right brain which is directly related to the drawing should be developed, but in order to express the creativity, teaching methods that can understand the mechanism of comprehensive brain where physical and psychological factors are expressed should be also developed. It is because the animation drawing education is teaching the methods for demonstrating the characteristics of artistic creativity required for the drawing ability. This process will not only be a foundation for identifying the difference against the previous animation drawing teaching methods, and the brain-based principles will be selected as the core strategic definition for designing the strategy and methodological model of future education.

Classification of Brain Magnetic Resonance Images using 2 Level Decision Tree Learning (2 단계 결정트리 학습을 이용한 뇌 자기공명영상 분류)

  • Kim, Hyung-Il;Kim, Yong-Uk
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.18-29
    • /
    • 2007
  • In this paper we present a system that classifies brain MR images by using 2 level decision tree learning. There are two kinds of information that can be obtained from images. One is the low-level features such as size, color, texture, and contour that can be acquired directly from the raw images, and the other is the high-level features such as existence of certain object, spatial relations between different parts that must be obtained through the interpretation of segmented images. Learning and classification should be performed based on the high-level features to classify images according to their semantic meaning. The proposed system applies decision tree learning to each level separately, and the high-level features are synthesized from the results of low-level classification. The experimental results with a set of brain MR images with tumor are discussed. Several experimental results that show the effectiveness of the proposed system are also presented.

Feature-based Gene Classification and Region Clustering using Gene Expression Grid Data in Mouse Hippocampal Region (쥐 해마의 유전자 발현 그리드 데이터를 이용한 특징기반 유전자 분류 및 영역 군집화)

  • Kang, Mi-Sun;Kim, HyeRyun;Lee, Sukchan;Kim, Myoung-Hee
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • Brain gene expression information is closely related to the structural and functional characteristics of the brain. Thus, extensive research has been carried out on the relationship between gene expression patterns and the brain's structural organization. In this study, Principal Component Analysis was used to extract features of gene expression patterns, and genes were automatically classified by spatial distribution. Voxels were then clustered with classified specific region expressed genes. Finally, we visualized the clustering results for mouse hippocampal region gene expression with the Allen Brain Atlas. This experiment allowed us to classify the region-specific gene expression of the mouse hippocampal region and provided visualization of clustering results and a brain atlas in an integrated manner. This study has the potential to allow neuroscientists to search for experimental groups of genes more quickly and design an effective test according to the new form of data. It is also expected that it will enable the discovery of a more specific sub-region beyond the current known anatomical regions of the brain.

Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network (인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석)

  • 이재성;김석기;이명철;박광석;이동수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.455-468
    • /
    • 1998
  • For the objective interpretation of cerebral metabolic patterns in epilepsy patients, we developed computer-aided classifier using artificial neural network. We studied interictal brain FDG PET scans of 257 epilepsy patients who were diagnosed as normal(n=64), L TLE (n=112), or R TLE (n=81) by visual interpretation. Automatically segmented volume of interest (VOI) was used to reliably extract the features representing patterns of cerebral metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

Motor Imagery Brain Signal Analysis for EEG-based Mouse Control (뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석)

  • Lee, Kyeong-Yeon;Lee, Tae-Hoon;Lee, Sang-Yoon
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.2
    • /
    • pp.309-338
    • /
    • 2010
  • In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.

  • PDF

Design of Intelligent Information Layer for Function Generation of Brain (두뇌 기능 구현을 위한 지능형 정보 레이어 설계)

  • 김성주;김종수;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.321-326
    • /
    • 2004
  • 인간의 뇌와 같이 다양한 정보들을 구분하고 처리하며 기억할 수 있는 능력을 지닌 시스템은 현재 지능 기법이 적용되고 있는 제어, 통신, 인터넷 응용 기술, 경영 분야, 분석 및 예측 등의 분야에 응용될 수 있으며 그 성능을 효과적으로 향상시킬 것이다. 이러한 다양한 분야에 활용될 수 있는 통합 모델을 제시하고 점차 발전시켜나감으로써 미래에 기대되는 다양한 인간형 시스템, 친환경적 시스템, 인간보조 시스템 등의 공학적 시스템 측면과 인간을 대신할 수 있으면서 인간과 유사한 능력을 지닌 학습 시스템, 추론 시스템, 판단 시스템 등의 지능형 시스템 측면에서 활용 가능한 모델로 성장시켜 나갈 수 있다. 이에, 본 논문에서는 생물학적인 두뇌의 정보처리 메커니즘을 해석하고 공학적인 개념의 정립과 정보처리 흐름을 규명하고 정의함으로써 출력에 반영할 수 있는 모듈을 설계하고 최종적으로, 뇌 정보처리 메커니즘에 기반한 레이어를 설계하여 범용으로 사용될 수 있도록 하고자 한다. 본 논문에서 설명되는 레이어 구조는 공학적인 분야는 물론 생물학적 뇌 연구에도 활용될 수 있을 것으로 기대된다.

  • PDF

Unsupervised Machine Learning based on Neighborhood Interaction Function for BCI(Brain-Computer Interface) (BCI(Brain-Computer Interface)에 적용 가능한 상호작용함수 기반 자율적 기계학습)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.289-294
    • /
    • 2015
  • This paper proposes an autonomous machine learning method applicable to the BCI(Brain-Computer Interface) is based on the self-organizing Kohonen method, one of the exemplary method of unsupervised learning. In addition we propose control method of learning region and self machine learning rule using an interactive function. The learning region control and machine learning was used to control the side effects caused by interaction function that is based on the self-organizing Kohonen method. After determining the winner neuron, we decided to adjust the connection weights based on the learning rules, and learning region is gradually decreased as the number of learning is increased by the learning. So we proposed the autonomous machine learning to reach to the network equilibrium state by reducing the flow toward the input to weights of output layer neurons.