• Title/Summary/Keyword: 뇌정위적 방사선 수술

Search Result 41, Processing Time 0.022 seconds

Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery (LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포)

  • Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • Radiosurgery treatment in the brain requires detailed information on three-dimensional dose distribution. A three-dimensional treatment planning is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. Three-dimensional dose models for non-coplanar moving arcs were developed using measured single beam data and efficient 3-D dose algorithms for circular fields. The implementation of three dimensional dose algorithms with stereotactic radiosurgery and the application of the algorithms to several cases are discussed.

  • PDF

Comparison of Stereotactic Radiosurgery and Whole Brain Radiotherapy in Patients with Four or More Brain Metastases (4개 이상의 다발성 전이성 뇌종양의 정위적 방사선수술과 전뇌 방사선조사의 비교)

  • Kim, Cheol-Jin;Baek, Mi-Young;Park, Sung-Kwang;Ahn, Ki-Jung;Cho, Heung-Lae
    • Radiation Oncology Journal
    • /
    • v.27 no.3
    • /
    • pp.163-168
    • /
    • 2009
  • Purpose: This study was a retrospective evaluation of the efficacy of stereotactic radiosurgery (SRS) in patients with >4 metastases to the brain. Materials and Methods: Between January 2004 and December 2006, 68 patients with $\geq$4 multiple brain metastases were included and reviewed retrospectively. Twenty-nine patients received SRS and 39 patients received whole brain radiotherapy (WBRT). Patients with small cell lung cancers and melanomas were excluded. The primary lesions were non-small cell lung cancer (69.0%) and breast cancer (13.8%) in the SRS group and non-small cell lung cancer (64.1%), breast cancer (15.4%), colorectal cancer (12.8%), esophageal cancer (5.1%) in the WBRT group. SRS involved gamma-knife radiosurgery and delivered 10~20 Gy (median, 16 Gy) in a single fraction with a 50% marginal dose. WBRT was delivered daily in 3 Gy fractions, for a total of 30 Gy. After completion of treatment, a follow-up brain MRI or a contrast-enhanced brain CT was reviewed. The overall survival and intracranial progression-free survival were compared in each group. Results: The median follow-up period was 5 months (range, 2~19 months) in the SRS group and 6 months (range, 4~23 months) in the WBRT group. The mean number of metastatic lesions in the SRS and WBRT groups was 6 and 5, respectively. The intracranial progression-free survival and overall survival in the SRS group was 5.1 and 5.6 months, respectively, in comparison to 6.1 and 7.2 months, respectively, in the WBRT group. Conclusion: SRS was less effective than WBRT in the treatment of patients with >4 metastases to the brain.

Development of Image Guided 3D Localization Program for Stereotactic Brain Biopsy (뇌 정위 생검술을 위한 영상지원 3차원 국재 프로그램 개발)

  • Lee Do Heui;Lee Dong Joon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.197-201
    • /
    • 2004
  • Stereotactic brain biopsy using stereotactic head frame such as CRW (Radionics, USA) has demonstrated a precise lesion localizing accuracy. In this study, we developed the target point calculation program for brain lesion biopsy using CRW stereotactic head frame and designed a phantom for verify the new developed program. The phantom was designed to have capability to simulate clinical stereotactic brain biopsy. The phantom has 10 vertical rods whose diameters are 6mm and tip of each rods are 2mm. Each rod has different length, 150 mm x 4 ea, 130 mm x 4 ea, 110 mm x 2 ea. CT images were acquired with Simens CT scanner as continuous transverse slice, 1 mm thickness in a 25 cm field of view and stored in a dicom file as a 256 x 256 matrix. As a result, the developed new target localization program will be useful for planning and training in complicated 3 dimensional stereotactic brain biopsy.

  • PDF

The Evaluation of Non-Coplanar Volumetric Modulated Arc Therapy for Brain stereotactic radiosurgery (뇌 정위적 방사선수술 시 Non-Coplanar Volumetric Modulated Arc Therapy의 유용성 평가)

  • Lee, Doo Sang;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Ahn, Min Woo;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.9-16
    • /
    • 2018
  • Purpose : Brain Stereotactic Radiosurgery can treat non-invasive diseases with high rates of complications due to surgical operations. However, brain stereotactic radiosurgery may be accompanied by radiation induced side effects such as fractionation radiation therapy because it uses radiation. The effects of Coplanar Volumetric Modulated Arc Therapy(C-VMAT) and Non-Coplanar Volumetric Modulated Arc Therapy(NC-VMAT) on surrounding normal tissues were analyzed in order to reduce the side effects caused fractionation radiation therapy such as head and neck. But, brain stereotactic radiosurgery these contents were not analyzed. In this study, we evaluated the usefulness of NC-VMAT by comparing and analyzing C-VMAT and NC-VMAT in patients who underwent brain stereotactic radiosurgery. Methods and materials : With C-VMAT and NC-VMAT, 13 treatment plans for brain stereotactic radiosurgery were established. The Planning Target Volume ranged from a minimum of 0.78 cc to a maximum of 12.26 cc, Prescription doses were prescribed between 15 and 24 Gy. Treatment machine was TrueBeam STx (Varian Medical Systems, USA). The energy used in the treatment plan was 6 MV Flattening Filter Free (6FFF) X-ray. The C-VMAT treatment plan used a half 2 arc or full 2 arc treatment plan, and the NC-VMAT treatment plan used 3 to 7 Arc 40 to 190 degrees. The angle of the couch was planned to be 3-7 angles. Results : The mean value of the maximum dose was $105.1{\pm}1.37%$ in C-VMAT and $105.8{\pm}1.71%$ in NC-VMAT. Conformity index of C-VMAT was $1.08{\pm}0.08$ and homogeneity index was $1.03{\pm}0.01$. Conformity index of NC-VMAT was $1.17{\pm}0.1$ and homogeneity index was $1.04{\pm}0.01$. $V_2$, $V_8$, $V_{12}$, $V_{18}$, $V_{24}$ of the brain were $176{\pm}149.36cc$, $31.50{\pm}25.03cc$, $16.53{\pm}12.63cc$, $8.60{\pm}6.87cc$ and $4.03{\pm}3.43cc$ in the C-VMAT and $135.55{\pm}115.93cc$, $24.34{\pm}17.68cc$, $14.74{\pm}10.97cc$, $8.55{\pm}6.79cc$, $4.23{\pm}3.48cc$. Conclusions : The maximum dose, conformity index, and homogeneity index showed no significant difference between C-VMAT and NC-VMAT. $V_2$ to $V_{18}$ of the brain showed a difference of at least 0.5 % to 48 %. $V_{19}$ to $V_{24}$ of the brain showed a difference of at least 0.4 % to 4.8 %. When we compare the mean value of $V_{12}$ that Radione-crosis begins to generate, NC-VMAT has about 12.2 % less amount than C-VMAT. These results suggest that if NC-VMAT is used, the volume of $V_2$ to $V_{18}$ can be reduced, which can reduce Radionecrosis.

  • PDF

Evaluation of Dosimetric Characteristics of Small Field in Cone Versus Square Fields Based on Linear Accelerators(LINAC) for Stereotactic Radiosugery(SRS) (선형가속기를 기반으로 한 뇌정위 방사선 수술 시 전용 콘과 정방형 소조사면의 선량 특성에 관한 고찰)

  • Yoon, Joon;Lee, Gui-Won;Park, Byung-Moon
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper we evaluated small field dose characteristics of exclusive cone fields versus square fields for stereotactic radiosugery (SRS) which is based on linear accelerators (LINAC). For this test, we used a small beam detector (stereotactic fields detector : SFD) with a 6 MV photon beam and a water phantom system (IBA, Germany). Percentage depth dose (PDD) was measured for different field sets (cones : ${\Phi}1\;cm$, ${\Phi}2\;cm$, ${\Phi}3\;cm$ ; square fields : $1{\times}1\;cm^2$, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$) at a source skin distance (SSD) of 100 cm. We measured the point depths at 1.5 cm, 5 cm, 10 cm, 20 cm, and 30 cm. The output factors were measured under the same geometrical conditions of the PDD and normalized at the maximum dose depth. To analyze the penumbra, we measured the dose profile with 95 cm of SSD, 5 cm of depth for each field sizes (${\Phi}1\;cm$, ${\Phi}3\;cm$, $1{\times}1\;cm^2$, and $3{\times}3\;cm^2$) using SFD. We obtained the values for every 1 mm interval in the physical field (90%) and 0.5 mm interval in the penumbra region (20 to 80%). The PDD variation of exclusive cones and square fields were 4.3 to 7.9% lesser than the standard field size ($10{\times}10\;cm^2$. The variation of PDD was reduced while the field size was increased. To compare the beam quality, we analyzed the $PDD_{20,10}$ and the results showed under the 1% of variations for all experiments except for ${\Phi}1\;cm$ cone and $1{\times}1\;cm^2$ fields. Output factors of exclusive cone were increased 3.1~4.6% than the square fields, and the penumbra region of exclusive cone was reduced 20% as compared to the square fields. As the previous researches report, it is very important for SRS and SFD that precise dosimetry in small beam fields. In this paper, we showed the effectiveness of exclusive cone, compared to square field. And we will study on the various detector characteristics for small beam fields.

Stereotactic Radiosurgery for Recurrent Glioblastoma Multiforme using Yeungnam Localization Device - Technical note and Clinical trial - (뇌정위적 방사선 절제술에 필요한 위치선정용기구 제작과 치험 2예)

  • Shin, Sei-One;Kim, Sung-Kyu;Kim, Myung-Se;Kim, Oh-Lyong;Cho, Soo-Ho
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.101-105
    • /
    • 1992
  • Authors performed a stereotactic radiosurgery with multiple noncoplanar convergent photon beams of linear accelerator (NELAC-1018 18 MeV, NEC) using a specially designed Yeungnam localization device for two patients with recurrent glioblastoma multiforme. One patient had 2 cm sized and the other 4 cm sized mass on the CT images. After single session of treatment with 15 and 20 Gy, headache was improved in a few days after radiosurgery with no remarkable untoward reactions. Our experience with these two patients were encouraging and we found that our localization device, which is easily adjustable and inexpensive, could be a valuable tool for stereotactic radiosurgery particularly in the treatment of recurrent brain tumor.

  • PDF

Development of a Stereotactic Radiosurgery Planning System (뇌정위 방사선수술을 위한 컴퓨터 치료계획시스템의 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • We developed PC-based planning system for linear accelerator based stereotactic radiosurgery. The system was developed under Windows 95 on Pentium Pro$\^$(R) 200 ㎒ IBM PC with 128 MB RAM. It was programed using IDL$\^$(R)/ of Research Systems, Inc. as a programing tool. CT image data obtained with BRW stereotactic frame is transferred to PC through magnetoptical disk. As loading the image, the system automatically recognizes the location of rods and establishes stereotactic coordinates. It accurately calculates and corrects the coordinates, degree of tilting, and magnification rate of axial images. After the coordinates is defined we can delineate and edit the contours of target and organs of interest on axial images. Upon delineating contours of target, isocenter is determined automatically and we can set up the beam configuration for radiosurgery. The system provides beam's eye view and room's eye view for efficient confuguring of beams. The system calculates dose distribution 3-dimensionally. It takes 1 to 2 minutes to calculate dose distribution for 5 arcs. We can verify the dose distribution on serial axial images. We can analyze the dose distribution quantitatively by evaluation of dose-volume histogram of target and organ of interest. This system, PC-based radiosurgery planning system, includes the basic features for radiosurgery planning and calculates dose distribution within reasonable time for clinical application.

  • PDF

Small Field Dosimetry for Stereotacitc Radiosurgery (뇌정위적 방사전수술을 위한 소조사면 측정)

  • 최동락;안용찬;이정일;허승재
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 1995
  • The aim of presentation is to obtain the beam parameters for tratment planning of steretactic radiosurgery. The dosimerical parameters such as TMR, scatter factor, and OAR was measured using diode, film, micro ion chamber, and thimble chanber for water phantom scanning. The results were compared each other. As a result, we determined OAR from film and scatter factor and TMR from diode as a basic data for treatment planning.

  • PDF

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.

Evaluation of Detector Dependency on Collimator in SRS: Compared Detectors; CC01, CC13, SFD (뇌정위적 방사선수술 시 콜리메이터 크기 변화에 따른 검출기 의존성 평가)

  • Bae, Yong-Ki;Bang, Dong-Wan;Park, Byung-Moon;Kang, Min-Yeong;Kim, Yeon-Rye
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.109-113
    • /
    • 2008
  • Purpose: To evaluate the detector dependency in the various collimator size for Stereotactic Radiosugery (SRS). Materials and Methods: This study was performed with 6 MV photon beam (Varian 21EX, Varian, US) and the measurement detectors are used by ion chamber CC01, CC13 (Wellhofer, Germany) and stereotactic diode detector (SFD, Wellhofer, Germany). SRS collimator size was used by ${\varphi}$5, 10, 20, 30 mm (Brain Lab, Germany). Percentage depth dose (PDD) was measured at SSD 100 cm and field size 10×10 cm from individual detectors. Ouput factor was measured by using same setup of PDD and with maximum dose depth. Data was normalized at field size $10{\times}10\;cm$. Beam profile was measured at SSD 100 cm in SRS collimator ${\varphi}$10, 30 mm and field $10{\times}10\;cm$ and a comparison of FWHM (full width half maximum), penumbra width (20~80%). Results: The CC13 detector was overestimated 16% than other detectors from the PDD in the 5 mm collimator. Output factors were underestimated CC01 28%, CC13 72% in the 5 mm collimator and CC01 9.6%, CC13 25% in the 10 mm collimator than the SFD. Maximum difference was 3% at the FWHM of the dose profile in the 10 mm collimator and difference of the 30 mm collimator was 0% at the FWHM. Penumbra width was increased CC01 122%, CC13 194% in the 10 mm collimator and CC01 68%, CC13 185% in the 30 mm collimator than the SFD. Conclusion: It is very important for accurate dosimetry to select a detector in small field. The SFD was considered with the most accurate dosimeter for small collimator dosimetry in this study.

  • PDF