• Title/Summary/Keyword: 뇌영상화

Search Result 173, Processing Time 0.036 seconds

Contested Technologies, Resetting the Boundary, and the "signifiant-politics": Semiotical Governance of New Technology in the Case of fMRA (경합하는 기술, 경계의 재설정, 그리고 기표-정치(signifiant-politics): 기능성자기공명혈관조영술(fMRA)의 사례로 살펴본 신기술의 명명 작업)

  • Lee, June-Seok
    • Journal of Science and Technology Studies
    • /
    • v.14 no.2
    • /
    • pp.199-222
    • /
    • 2014
  • Functional Magnetic Resonance Angiography (fMRA) was a technoscientific innovation that allows scientists to directly view the changes made in the blood vessels of a brain. fMRA was first developed at Neuroscience Research Institute (NRI) in Korea. fMRA mainly utilizes 7 Tesla MRI technology, and NRI is equipped with the instrument. First article on fMRA was published in 2008, and two more papers in 2010 and 2012 consecutively had been published on the newly developed technique. However, fMRA is a competitive technology with existing fMRI. Both techniques capture microvascular changes in a brain, and by doing it, both techniques visualize the cognitive and affective changes. fMRI technology was introduced by Seiji Ogawa in the early 1990's and has been widely used since then. In contrast, fMRA was a newer technology and rather unknown. Developers of fMRA in NRI used series of signifiant-politics in order to make it better known to scientific community as well as public. By resetting the boundaries of existing concept of fMRI, they tried to lower the threshold of a new concept/technique. This case study shows how technoscientists use semiotic strategies governing new technology.

  • PDF

Functional Brain Mapping Using $H_2^{15}O$ Positron Emission Tomography ( II ): Mapping of Human Working Memory ($H_2^{15}O$ 양전자단층촬영술을 이용한 뇌기능 지도 작성(II): 작업 기억의 지도 작성)

  • Lee, Jae-Sung;Lee, Dong-Soo;Lee, Sang-Kun;Nam, Hyun-Woo;Kim, Seok-Ki;Park, Kwang-Suk;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.238-249
    • /
    • 1998
  • Purpose: To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using $H_2^{15}O$ PET. Materials and Methods: Repeated $H_2^{15}O$ PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 match-ing trials. On each trial, four targets, a fixation dot and a probe were presented sequentially and subject's task was to press a response button to indicate whether or not the probe was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Results: Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, promoter cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawings, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. Conclusion: The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system.

  • PDF

An fMRI study on the cerebellar lateralization during visuospatial and verbal tasks (공간 및 언어 과제 수행 시 소뇌의 편측화에 관한 뇌 기능 연구)

  • Chung, Soon-Cheol;Sohn, Jin-Hun;Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Lee, Beob-Yi
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.425-432
    • /
    • 2009
  • The purposes of the study were to examine cerebellar areas and lateralization responsible for visuospatial and verbal tasks using functional Magnetic Resonance Imaging(fMRI). Eight healthy male college students($21.5\;{\pm}\;2.3$ years) and eight male college students($23.3\;{\pm}\;0.5$ years) participated in this fMRI study of visuospatial and verbal tasks, respectively. Functional brain images were taken from 3T MRI using the single-shot EPI method. All functional images were aligned with anatomical images using affine transformation routines built into SPM99. The experiment consisted of four blocks. Each block included a control task(1 minute) and a cognitive task(1 minute). A run was 8 minutes long. Using the subtraction procedure, activated areas in the cerebellum during the visuospatial and verbal tasks were color-coded by t-score. A cerebellar lateralization index was calculated for both cognition tasks using number of activated voxels. The activated cerebellar regions during the both cognition tasks of this study agree with previous results. Since the number of activated voxels of the left and right cerebellar hemisphere was almost same, there was no cerebellar lateralization for both cognition tasks.

  • PDF

Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings (MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교)

  • Park, Sang-Joon;Ryu, Young-Hoon;Jeon, Tae-Joo;Kim, Jai-Keun;Nam, Ji-Eun;Yoon, Pyeong-Ho;Yoon, Choon-Sik;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.490-496
    • /
    • 1998
  • Purpose: We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Materials and Methods: Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke-like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were Performed and imaging features were analyzed. Results: MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Conclusion: Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients.

  • PDF

The Comparison of Susceptibility Changes in 1.5T and3.0T MRIs due to TE Change in Functional MRI (뇌 기능영상에서의 TE값의 변화에 따른 1.5T와 3.0T MRI의 자화율 변화 비교)

  • Kim, Tae;Choe, Bo-Young;Kim, Euy-Neyng;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.

  • PDF

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF

The Evaluation of Cerebral Executive Function Using Functional MRI (기능적 자기공명영상기법을 이용한 대뇌의 집행기능 평가)

  • Eun, Sung Jong;Gook, Jin Seon;Kim, Jeong Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.305-311
    • /
    • 2013
  • This study involves an experiment using functional magnetic resonance imaging(fMRI) to delineate brain activation for execution functional performance. Participates to this experiment of the normal adult (man 4, woman 6) of 10 people, is not inserts the metal all closed phobia and 24.5 year-old average ages which the operating surgeon experience which are not they were. The subject for a functional MRI experiment word -color test prosecuting attorney subject rightly at magnetic pole presentation time of 30 first editions and after presenting, uses SPM 99 programs and the image realignment, after executing a standardization (nomalization), a difference which the signal burglar considers the timely order as lattice does, pixel each image will count there probably is, in order to examine rest and active crossroad dividing independence sample t-test (p<.05). Overlapped in this standard anatomic image and got a brain activation image from level of significance 95%. With functional MRI resultant execution function inside being relation, the prefrontal lobe, anterior cingulate gyrus, parietal lobe, orbitofrontal gyrus, temporal lobe, parietal lobe was activated. The execution function promotes a recovery major role from occupational therapy, understanding about the damage mechanism is important. When confirms the brain active area which accomplishes an execution function brain plasticity develops the cognitive therapeutic method which is effective increases usefully very, will be used.

Assessment of Attenuation Correction Techniques with a $^{137}Cs$ Point Source ($^{137}Cs$ 점선원을 이용한 감쇠 보정기법들의 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyoung;Park, Yun-Young;Park, Hae-Joung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Purpose: The objective of this study was to assess attenuation correction algorithms with the $^{137}Cs$ point source for the brain positron omission tomography (PET) imaging process. Materials & Methods: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a $^{137}Cs$ point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. Results: ELEC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. Conclusion: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography (${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교)

  • Lee, Jae-Sung;Lee, Dong-Soo;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.288-300
    • /
    • 2003
  • Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.

Quantitative Study of Annular Single-Crystal Brain SPECT (원형단일결정을 이용한 SPECT의 정량화 연구)

  • 김희중;김한명;소수길;봉정균;이종두
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 1998
  • Nuclear medicine emission computed tomography(ECT) can be very useful to diagnose early stage of neuronal diseases and to measure theraputic results objectively, if we can quantitate energy metabolism, blood flow, biochemical processes, or dopamine receptor and transporter using ECT. However, physical factors including attenuation, scatter, partial volume effect, noise, and reconstruction algorithm make it very difficult to quantitate independent of type of SPECT. In this study, we quantitated the effects of attenuation and scatter using brain SPECT and three-dimensional brain phantom with and without applying their correction methods. Dual energy window method was applied for scatter correction. The photopeak energy window and scatter energy window were set to 140ke${\pm}$10% and 119ke${\pm}$6% and 100% of scatter window data were subtracted from the photopeak window prior to reconstruction. The projection data were reconstructed using Butterworth filter with cutoff frequency of 0.95cycles/cm and order of 10. Attenuation correction was done by Chang's method with attenuation coefficients of 0.12/cm and 0.15/cm for the reconstruction data without scatter correction and with scatter correction, respectively. For quantitation, regions of interest (ROIs) were drawn on the three slices selected at the level of the basal ganglia. Without scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.2 and 2.1, respectively. However, the ratios between basal ganglia and background were very similar for with and without attenuation correction. With scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.69 and 2.64, respectively. These results indicate that the attenuation correction is necessary for the quantitation. When true ratios between basal ganglia and background were 6.58, 4.68, 1.86, the measured ratios with scatter and attenuation correction were 76%, 80%, 82% of their true ratios, respectively. The approximate 20% underestimation could be partially due to the effect of partial volume and reconstruction algorithm which we have not investigated in this study, and partially due to imperfect scatter and attenuation correction methods that we have applied in consideration of clinical applications.

  • PDF