• Title/Summary/Keyword: 뇌기전

Search Result 220, Processing Time 0.025 seconds

Neuroanatomical studies on the mechanism of scalp acupuncture therapy using the pseudorabies virus (Pseudorabies virus(PRV)를 이용한 두침(頭針) 치료(治療) 기전(機轉)에 대한 신경해부학(神經解剖學的) 연구(硏究))

  • Lee, Tae-Young;Lee, Chang-Hyun;Lee, Sang-Ryoung;Yuk, Sang-Won;Lee, Kwang-Gyu;Yuk, Tae-Han
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.261-276
    • /
    • 2000
  • 본 실험은 pseudorabies 바이러스 (PRV) 의 Bartha strain 을 안면신경의 측두지, 하지를 지배하는 신경 (좌골신경) 및 상지를 지배하는 신경 (요골, 척골, 정중신경) 에 주입한 후 4 일간의 생존시간이 경과한 후 척수와 뇌를 적출하여 동결절편을 제작한 후 면역조직화학적 염색기법과 X-gal 조직화학 염색법을 시행하여 염색된 신경세포체를 척수와 뇌에 투사된 공통영역을 관찰하고 두침의 영역중 하나인 운동구와 사지와의 관계에 대한 실험적 증거를 제시하고자 시행하였다. 위의 실험에서 얻어진 결과는 아래와 같다. 1. 안면신경의 측두지, 하지를 지배하는 신경 (좌골신경) 및 상지를 지배하는 신경 (요골, 측골, 정중신경) 에서 투사된 공통된 영역은 척수에서 경수의 층판 1-IV, 흉수의 intermediolateral nucleus(IML), dorsal nucleus(D) 및 층판 X, 요수의 층판 IV, V, 천수의 층판 IV, V, IX, X 등의 영역에서 관찰되었고, 뇌줄기에서는 caudoventrolateral reticular nucleus(CVL), nucleus solitary tract(Sol), rostroventrolateral nucleus(RVL), area postrema(AP), raphe nuclei(raphe pallidus, raphe obscurus, raphe magnus), inferior olivary nucleus 의 등쪽부분 (gigantocellular reticular nucleus, Gi), Kolliker-Fuse nucleus(KF), central gray(CG), dorsal raphe nucleus (DR) and A5 영역에 표지된다. 또한 paraventricular hypothalamic nucleus(PRV) 와 lateral hypothalamic reticular nucleus(LH)에서도 관찰되고 locus coeruleus(LC) 와 subcoeruleus nuc!eus(SubCA) 에서도 관찰된다.

  • PDF

Dissociation of the semantic and syntactic processing reflected on fMRI in Korean sentences (기능적 자기공명영상에 나타난 한글 의미.통사 문장 처리의 해리)

  • Lee, Hong-Jae;Lee, Dong-Hoon;Nam, Ki-Chun;Lee, Eun-Jung;Moon, Chan-Hong;Ryoo, Jae-Wook;Na, Dong-Gyu
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.405-410
    • /
    • 2000
  • 본 연구에서는 기능적 자기공명영상을 이용하여 한글 문장의 의미와 통사 처리에 관한 뇌의 활성화 양상을 비교함으로써 한글문장 이해의 과정에 대한 신경해부학적 증거를 찾고자 하였다. 6명의 자원자를 대상으로 문장진위판단과제를 이용하여 활성화를 유도하였다. 1.5T 초전도 자기공명영상 장치에서 EPI로 BOLD 기법을 이용하여 기능적 영상을 얻었으며 영상 후 처리는 SPM99 분석 프로그램을 이용하였다. 의미관련 통사관련 문장 모두에서 좌 우 전두회(frontal gyrus) 영역에서 활성화되었다. 의미와 통사처리 영역을 구분하기 위하여 감산법을 적용한 결과, 의미처리는 좌반구의 중측두회(middle temporal gyrus) 영역에서, 통사처리는 우반구의 하전두회(BA44) 부위에서 더 많이 활성화되었다. 의미처리에서 더 우세한 성향을 띠는 부위로 밝혀진 중측두회 영역은 의미처리시에 활성화되는 영역으로 보고하는 기존의 연구와 일치하는 결과이다. 의미와 통사 문장처리시의 뇌 활성화 양상은 뇌의 여러 영역에서 중첩되어 있기는 하지만, 특정영역에서의 차이를 보이고 있으므로, 의미와 통사처리는 다른 기전(mechanism)에 의해서 일어남을 시사해 준다.

  • PDF

Neuroprotective Effect of Dizocilpine (MK-801) via Anti-apoptosis on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Seo, Min-Ae;Lee, Hyun-Ju;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.17 no.2
    • /
    • pp.181-192
    • /
    • 2010
  • Purpose: Current studies have demonstrated the neuroprotective effects of dizocilpine (MK-801) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether dizocilpine can protect the developing rat brain from HI injury via anti-apoptosis. Methods: In an in vitro model, embryonic cortical neuronal cell culture of Sprague-Dawley (SD) rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with dizocilpine (HD). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$ incubators (94% N2, 5% $CO_2$) for 16 hours. In an in vivo model, left carotid artery ligation was done in 7-day-old SD rat pups. The animals were divided into six groups; hypoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with dizocilpine (HD). Hypoxia was made by exposure to a 2 hour period of hypoxic incubator (92% N2, 8% $O_2$). Results: In the in vitvo and in vivo models, the expressions of Bcl-2 in the hypoxia groups were reduced compared to the normoxia group. whereas those in the dizocilpine-treated group were increased compared to the hypoxia group. However. the expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were revealed reversely. Conclusion: Dizocilpine has neuroprotective property over perinatal HI brain injury via anti-apoptosis.

Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury (신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호)

  • Jang, Yoon-Jung;Seo, Eok-Su;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.

Neuroprotective effects of geneticin (G418) via apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항고사를 통한 geneticin (G418)의 신경보호 효과)

  • Ju, Mi;Lee, Hyun Ju;Lee, Sun Ju;Seo, Eo Su;Park, Hye Jin;Lee, Kye Yang;Lee, Gyeong Hoon;Choi, Eun Jin;Kim, Jin Kyung;Lee, Jong Won;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.2
    • /
    • pp.170-180
    • /
    • 2008
  • Purpose : Some antibiotics were known to exert neuroprotective effects in the animal model of hypoxic-ischemic (H-I) brain injury, but the mechanism is still unclear. A recent study reported that geneticin (G418), an aminoglycoside antibiotic, increased survival of human breast cancer cells by suppressing apoptosis. We investigated the neuroprotective effects of systemically administrated geneticin via anti-apoptosis following the H-I brain injury Methods : Seven-day-old Sprague-Dawley rat pups were subjected to unilateral (left) common carotid artery occlusion followed by 2.5 hours of hypoxic exposure and the cortical cell culture of rat brain was done under a hypoxic incubator. Apoptosis was measured in the injured hemispheres 7 days after H-I insult and in the injured cells from hypoxic chamber using morphologic analysis by Terminal dUTP Nick-end Labeling(TUNEL) assay and immunohistochemistry for caspase-3, and cytologic analysis by western blot and real time PCR for bax, bcl-2, and caspase-3. Results : The gross appearance and hematoxylin and eosin stain revealed increased brain volume in the geneticin-treated animal model of perinatal H-I brain injury. The TUNEL assay revealed decreased apoptotic cells after administration of geneticin in the cell culture model of anoxia. Immunohistochemistry showed decreased caspase-3 expression in geneticin-treated cortical cell culture. Western blot and real-time PCR showed decreased caspase-3 expression and decreased ratio of Bax/Bcl-2 expression in geneticin-treated animal model. Conclusion : Geneticin appears to exert a neuroprotective effect against perinatal H-I brain injury at least via anti-apoptosis. However, more experiments are needed in order to demonstrate the usefulness of geneticin as a preventive and rescue treatment for H-I brain injuries of neonatal brain.

Quantitative Evaluation of Regional Cerebral Blood Flow by Visual Stimulation in $^{99m}Tc-HMPAO$ Brain SPECT ($^{99m}Tc-HMPAO$ 뇌 SPECT에서 시각자극에 의한 국소 뇌 혈류변화의 정량적 검증)

  • Juh, Ra-Hyeong;Suh, Tae-Suk;Kwark, Chul-Eun;Choe, Bo-Young;Lee, Hyoung-Koo;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.166-176
    • /
    • 2002
  • Purpose: The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of $^{99m}Tc-HMPAO$ (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. Materials and Methods: The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and $^{99m}Tc-HMPAO$ SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the legion of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). Results: The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was $32.50{\pm}5.67%$. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Conclusion: Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

Role of Sirtuin 1 in Depression and Associated Mechanisms (우울증에 관한 Sirtuin 1의 역할과 관련된 기전)

  • Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1120-1127
    • /
    • 2021
  • Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.

THE SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FINDINGS IN DEVELOPMENTAL LANGUAGE DISORDERS (발달성언어장애아(發達性言語障碍兒)의 단일광자방출전산화단층촬영(單一光子防出電算化斷層撮影) 소견(所見)에 관한 연구)

  • Park, Jin-Seng;Cho, Soo-Churl;Lee, Myung-Chul
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.46-55
    • /
    • 1992
  • The pathophysiology of developmental language disorder is a highly controversial matter. In order to investigate the neural mechanisms involved in developmental language disorders, the authors studied three dimensional regional cerebral blood flow(rCBF) using Tc-99mH-MPAO in 42 children with developmental language disorders. The results are summarized as follows : 1) 61.9% (26/42) of this series revealed decreased perfusion in SPECT. 2) Regions of hypoperfusion were seen in cerebral cortex(47.6%, 20/42), thalamus(33.3%, 14/42), basal ganglia(11.9%, 5/42) and cerebellum(7.1%, 3/42). This study suggests that developmental language disorder could be due to specific functional impairment of the local brain regions which could not detected by conventional investigations such as brain CT or EEG.

  • PDF

Double-processed ginseng berry extracts enhance learning and memory in an Aβ42-induced Alzheimer's mouse model (Aβ42로 유도된 알츠하이머 마우스 모델에서 이중 가공 인삼열매 추출물의 학습 및 기억 손실 개선 효과)

  • Jang, Su Kil;Ahn, Jeong Won;Jo, Boram;Kim, Hyun Soo;Kim, Seo Jin;Sung, Eun Ah;Lee, Do Ik;Park, Hee Yong;Jin, Duk Hee;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.160-168
    • /
    • 2019
  • This study aimed to determine whether double-processed ginseng berry extract (PGBC) could improve learning and memory in an $A\hat{a}42$-induced Alzheimer's mouse model. Passive avoidance test (PAT) and Morris water-maze test (MWMT) were performed after mice were treated with PGBC, followed by acetylcholine (ACh) measurement and glial fibrillary acidic protein (GFAP) detection for brain damage. Furthermore, acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression were analyzed using Ellman's and qPCR assays, respectively. Results demonstrated that PGBC contained a high amount of ginsenosides (Re, Rd, and Rg3), which are responsible for the clearance of $A{\hat{a}} 42$. They also helped to significantly improve PAT and MWMT performance in the $A{\hat{a}} 42-induced$ Alzheimer's mouse model when compared to the normal group. Interestingly, ACh and ChAT were remarkably upregulated and AChE activities were significantly inhibited, suggesting PGBC to be a palliative adjuvant for treating Alzheimer's disease. Altogether, PGBC was found to play a positive role in improving cognitive abilities. Thus, it could be a new alternative solution for alleviating Alzheimer's disease symptoms.

유기수은 유발 뇌손상에 미치는 셀레늄의 작용기전 및 전자현미경적 관찰

  • Jhoo, Wnag-Kee;Kim, Hyoung-Chun;Song, Ke-Yong
    • Toxicological Research
    • /
    • v.7 no.1
    • /
    • pp.73-81
    • /
    • 1991
  • The present study was performed to explore the antioxidant effect of selenium on damaged brain induced by organic mercury. Male ICR mice were given consecutively 7 injections for 7 days of : (I) sodium selenite 1 mg/kg s.c. alone, (2) methylmercuric chloride 10mg/kg s.c. alone, (3) methylmercuric chloride simultaneously in combination with sodium selenite, and (4) saline alone as control respectively. Based on the above protocol, we monitored various oxyradical scavenging system as well as the finding of electron microscopy. The results from brain tissues were as follows` 1. Selenium inhibited the rate of generation of superoxide radical.

  • PDF