• Title/Summary/Keyword: 농축슬러지

Search Result 86, Processing Time 0.02 seconds

혐기성 고정 생물막 공정에서 유입 농도의 변화에 따른 기질 전달 현상

  • Lee, Deok-Hwan;Kim, Do-Han;Park, Yeong-Sik;Yun, Tae-Yeong;Song, Seung-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.351-354
    • /
    • 2002
  • This research discussed about the substrate transport phenomena in anaerobic biofilm. Three anaerobic fixed biofilm reactors were filled with the sludge of anaerobic digestor from Suyoung wastewater treatment plant. After 15 days of biofilm formation periods, suspended solids within the reactors were removed, and each fixed biofilm reactor was supplied with synthetic wastewater of different concentration of 8.00 mgTOC/L, 9.76 mgTOC/L and 18.97 mgTOC/L, respectively. The experimental results in conjunction with substrate transfer phenomena indicated that data - thickness, substrate removal rate. At the low influent substrate concentration(reactor 1 : 8.00 mgTOC/L, reactor 2 : 9.76 mgTOC/L), the rate of substrate utilization($k_v$), effective diffusivity($D_{eff}$) of substrate in biofilm were similar. While $k_v$ and $D_{eff}$ of the high influent substrate concentration(reactor 3 : 18.97 mgTOC/L) were higher than data in the reactors of the low influent substrate concentration.

  • PDF

Cause of Break-up and Flotation Characteristics for Sludge from DAF Process (DAF 공정에서 발생한 슬러지의 Break-up 원인과 부상 특성)

  • Yoo, Young-Hoon;Moon, Yong-Taik;Kim, Seong-Jin;Lee, Kwang-Joon;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.527-536
    • /
    • 2010
  • Although the bubble-floc agglomerate floated and formed the float layer on the surface of the water in the DAF process, after inducing in the thickening tank a part of the bubble-floc agglomerate come up again to the surface and the other is settled at the bottom of the tank. The bubble-floc agglomerate divided into two group as the scum on the surface and the sludge of the bottom gives rise to operational troubles for the thickening process. In order to find out the cause of break-up and the effective thickening method for sludge from the DAF process, the composition of the bubble-floc agglomerate was investigated and a series of flotation experiments carried out. There was no difference of composition between the scum on the surface and the sludge of the bottom in the thickening tank. The coagulation was not effective to improve the trouble that the bubble-floc agglomerate divided into the scum and the sludge. It was estimated that for the bubble-floc agglomerate of thickening tank the trouble was caused by not the change or the difference of chemical composition but whether the bubble-floc agglomerate hold bubbles. Furthermore, for the effective thickening of sludge from the DAF process, it is required an additional flotation applied the AS ratio depending upon the solid concentration of sludge as the operation parameter.

Study on Sludge Thickening with Mesh is Used as Filtration Msdia (여과분리재를 이용한 슬러지 농축에 관한 연구)

  • Kim, Boo-Gil;Park, Min-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.945-949
    • /
    • 2006
  • For a membrane bio-reactor, it is possible to fillet and separate activated sludge and effluent by head loss of centimeters, if non-woven fabric material is used as titration media. However, if non-woven fabric material is used to thicken high-concentration sludge, excessive sludge attachment causes the rapid decrease of flux. Mesh with fore sizes of $100{\mu}m,\;150{\mu}m,\;and\;200{\mu}m$ allows for easy separation of attached sludge. This study examined the possibility of mesh as filtration media. Existing close-flow filtration process, which requires maintaining sludge movement, makes It difficult to obtain high thickening rate. With a view of complementing this weakness, this study has made an experimental examination on how high-concentration sludge (about 3,000mg/L to 10,000mg/L) will be filtered and thickened when mesh module is submersed in the bio-reactor. Effluent flowed from the bottom of the bio-reactor by head loss of 65cm. In case of pore size of $100{\mu}m$, SS showed high recovery of 80% to 96%; therefore, it has been decided that mesh can be used as filtration media. Filtration lasted for more than 9 hours, until sludge with 9,000mg/L in MLSS concentration was thickened 9 times as dense. In the range from 3,610mg/L to 9,060mg/L in MLSS concentration, it was possible to obtain effluent with less than 2mg/L in MLSS concentration within 10 minutes.

Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam (분말활성탄 및 제올라이트 담지 폴리우레탄 담체를 이용한 바이오필터에서의 악취가스 제거)

  • Lee, Soo-Chul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.209-215
    • /
    • 2012
  • The performance and removal efficiencies of a pilot scale biofilter were estimated by using ammonia and hydrogen sulfide as the odorous gases. Expanded polyurethane foam coated with powdered activated carbon and zeolite was used as a biofilm supporting medium in the biofilter. Odorous gases from the sludge thickener of a municipal wastewater treatment plant were treated in the biofilter for 10 months and the inlet ammonia and hydrogen sulfide concentrations were 0.1-1.5 and 2-20 ppmv, respectively. The removal efficiencies reached about 100% at the empty bed retention time (EBRT) of 3.6-5 seconds except for the adaptation periods. The pressure drop of the biofilter caused by the gas flow was also low that the maximum attained was 31 mm $H_2O$ during the operation. Its stability was confirmed in the long term due to the fact that the biofilter and the polyurethane medium had a minimum plugging and compression. The microbial community on the medium is critical for the performance of the biofilter especially the distribution of ammonia oxidizing bacteria (AOB) and sulfur oxidizing bacteria (SOB). The distribution of Nitrosomonas sp. (AOB) and Thiobacillus ferroxidans (SOB) was confirmed by FISH (fluorescence in situ hybridization) analysis. The longer the operation time, the more microbial population observed. Also, the medium close to the gas inlet had more microbial population than the medium at the gas outlet of the biofilter.

A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.149-157
    • /
    • 2014
  • The steam generator tubes of nuclear power plants have various types of corrosion failures during the plant operation. The stress corrosion cracking which occurs on the outer surface of tube is called the secondary side stress corrosion cracking and mainly occurs in the expansion-transition area of tube. The causes are the concentration of impurities by the sludge pile-up related to the geometry of its region and the residual stress by tube expansion in the process of steam generator manufacturing. Especially the directionality and sizes of residual stresses are differed according to the tube expansion methods and the direction and the frequency of tube cracks depend on their characteristics. In bases on the plant experiences, it is notified that circumferential cracks of tubes expanded with explosive expansion method are dominantly occurred compared to those of tubes done with hydraulic expansion one. Therefore in this study, according to tube expansion methods frequencies and sizes of tube cracks with specific direction are compared by means of accelerated immersion test and also the crack morphology and the specific chemicals from water-chemistry environment are observed through the fracture surface examination.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.