• Title/Summary/Keyword: 농약분해

Search Result 236, Processing Time 0.028 seconds

Pesticide Degradation Activity of Several Isolates of Soil Bacteria and Their Identification (토양에서 분리한 수종 세균의 농약분해력 검정 및 동정)

  • Park, Kyung-Hun;Lee, Young-Kee;Lee, Su-Heon;Park, Byung-Jun;Kim, Chan-Sub;Choi, Ju-Hyeon;Uhm, Jae-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.138-148
    • /
    • 2006
  • Two bacteria were isolated from the continuously pesticide-used soil under plastic film house and upland condition. The degradation test of several pesticides by the selected bacteria, B59 and B71, were conducted. The degradation rates for 6 pesticides, procymidone, chlorothalonil, ethoprophos parathior, alachlor and pendimethalin, in medium by the isolates were 21.1% to 53.2% higher than non-inoculated medium. Under shaking culture condition, 90% to 95% of procymidone was degraded after 21 days treatment. Parathion was degraded in the range of 60% to 100% by B71 and B59, respectively. Otherwise 70% of alachlor was degraded by the two isolated bacteria during same period. The pH was not significantly affected for degradation of pesticides. The bacterial strains, B59 and B71 was identified as Acinetobacter sp. and as Pseudomonas sp. based on morphological, biochemical and physiological characteristics, and identity and similarity of automatic identification system, Biolog and MIDI.

Effects of Ozonated Water Treatment on Pesticide Residues and Catechin Content in Green Tea Leaves (녹차의 잔류농약과 카테친 함량에 미치는 오존수 처리 효과)

  • Jung, Kyung-Hee;Seo, Il-Won;Nam, He-Jung;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.265-270
    • /
    • 2008
  • This study examined the effects of treating green tea leaves with ozonated water by evaluating pesticide residue levels and catechin content. The pesticide residue levels of tea leaves treated with carbendazim, captain, diazinon, fenthim, dichlorvos, and chlorpyrifos ranged from 43.2 to 48.2 ppm. For leaves treated by soaking or watering with tap water, or with 0.25 ppm of ozone water for 30 min. Pesticide residue levels were reduced by 24.0-30.2%, 30.3-33.6%, 52.4-70.5%, and 65.5-80.2%, respectively. No major differences in catechin content were observed in the leaves according to the soaking and rinsing treatments using ozonated or tap water.

Behavior of Pesticides in Soil (토양 중 농약의 동태)

  • Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.303-307
    • /
    • 2010
  • The researches with pesticides in soil were divided several categories such as run off from soil surface, adsorption and desorption in soil, leaching through soil, degradation and decomposition studies, fates in soil, monitoring survey and development of analytical procedures and so on. In this paper it was reviewed that the research results published in Korean journals since 1996, in connection with the former review as 'Evaluation on the effects of pesticide residues to agroecosystem in Korea'.

Decomposition rate of iprobenfos, isoprothiolane, and diazinon by some environmental factors in aqueous systems (몇가지 수중 환경요인에 의한 iprobenfos, isoprothiolane 및 diazinon의 분해속도)

  • Park, Byung-Jun;Choi, Ju-Hyun;Lee, Byung-Moo;Im, Geon-Jae;Kim, Chan-Sub;Park, Kyung-Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.39-44
    • /
    • 1998
  • Three pesticides for paddy rice, iprobenfos, isoprothiolane, and diazinon were examined on some environmental factors, their hydrolysis, microbial degradation, and photolysis in aqueous systems. Iprobenfos was mainly degraded by microorganisms and its half-life was 5.7 days at $28^{\circ}C$ in aqueous systems. Hydrolysis of iprobenfos was accelerated by the higher temperature, but its photodegradation was accelerated by the lower pH. Isoprothiolane was rapidly decomposed by two factors, microorganisms and sunlight. The half-life of isoprothiolane by sunlight was 91 days at pH 9.0, while it was 13 days at pH 4.0 and 16 days at pH 7.2. However, it was shortened under low pH condition. In aqueous system, diazinon was degraded by all of three factors and its degradation rate was remarkably accelerated by acidic solution. Main degradation factors of iprobenfos, isoprothiolane, and diazinon in the aqueous system were investigated by microbial degradation, photolysis, and hydrolysis, respectively. The strains of microbial degradation for iprobenfos, isoprothiolane, and diazinon in the aqueous environment were identified as Pseudomonas putida, Alcaligenes xylosoxydans ss, Klebsiella planticola/ornithinllytica, respectively. The similarity rates of identity were $54.8{\sim}86.2%$ with biolog-system.

  • PDF

이제는 농약공포로 부터 해방되자

  • 한국농약공업협회
    • The Bimonthly Magazine for Agrochemicals and Plant Protection
    • /
    • v.3 no.1
    • /
    • pp.6-20
    • /
    • 1982
  • 최근 성력농업의 발전과 함께 농약사용량이 증가하자 일부 식자층 및 자연농법주장자들은 소위 농약공해론을 거론하면서 일반 대중을 농약공포속으로 오도하고 있다. 그러나 농약의 엄격한 개발과정과 분해$\cdot$소실과정에 관해 좀 더 이해한다면 농약공포가 현실적으로 얼마나 큰 오인의 소산이었던가를 알게 된다.

  • PDF

Degradation of Organochlorinated Pollutants by Microorganism -Degradation of PCBs and Organochlorine Pesticides, and Degradasion Products- (미생물에 의한 난분해성 유기염소계 오염물질의 분해 -각종 PCBs 및 유기염소계 농약의 분해와 분해산물-)

  • Kim, Chan-Jo;Oh, Man-Jin;Lee, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.40-45
    • /
    • 1987
  • Degradation of polychlorinated biphenyls(PCBs) and organochlorine pesticides by Alcaligenes aquamarinus has been studied and also degradation product of PCB-42 was investigated by TLC and GC. The less chlorinated members of PCBs such as Aroclor 1016 was degraded readily by the strain and rates of the microbial degradation of several organochlorine pesticides were found to decrease in the order of p,p'-DDT, r-BHC and Thiolix. Approximately 40 percent of PCB-42 was degraded when incubated with non-autoclaved soil for 25 days at $25^{\circ}C$. The yellow compound from PCB-42 was tentatively identified as p-chlorobenzoic acid.

  • PDF