• Title/Summary/Keyword: 논 토양

Search Result 5,043, Processing Time 0.037 seconds

Dry Matter Yield and Forage Quality at Mixture of Annual Legumes and Italian ryegrass on Paddy Field (논에서 이탈리안 라이그라스와 두과 사료작물 혼파에 따른 생산성 및 사료가치 비교)

  • Kim, Won-Ho;Kim, Ki-Young;Jung, Min-Woong;Ji, Hee-Chung;Lim, Young-Chul;Seo, Sung;Kim, Jong-Duk;Yoon, Bong-Ki;Lee, Hyo-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.33-38
    • /
    • 2011
  • This experiment was conducted to compare the dry matter yield and forage quality according to the seed mixture of annual legumes and Italian ryegrass (Lolium multiflorum, IRG) on paddy field at the experimental field of Jeollanam-Do Agricultural Research and Extension Services from 2007 to 2008. The five treatments used in this experiment were IRG single (cv. Kowinearly), IRG+Chinese milk vetch mixture, IRG + Crimson clover (cv. Linkarus) mixture, IRG + Austrian winter pea (Pisum sativum subsp. arvense cv. forage Pea) mixture and IRG + Hairy vetch (Vicia villosa. cv. Oregon Common) mixture. And the mixing ratio of Italian ryegrass + annual legumes were 70 : 30 as based mono seed rate. The dry matter (DM) percentage at harvest was 23.6~26.8%. The DM percentage among IRG single and mixture treatments were similar. The yields of fresh and CP were high in IRG + Forage pea mixtures as a 40,100 kg and 625 kg per ha, respectively (p<0.05). The yields of dry matter were high in IRG + Forage pea and IRG + hairy vetch pea mixtures as a 9,470 kg and 9,500 kg per ha, respectively (p<0.05). But the forage quality did not show difference between Italian ryegrass mono-culture and annual legumes mixture. The Av. $P_2O_5$ in IRG+Forage pea mixture was 78 mg/kg and concentration of K were 0.52~0.88. In conclusion, the mixture of IRG and Forage pea, dry matter yield, protein yield increased, and was effective in enhancing the stability of cultivation.

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Studies on Degradation of Nucleic acid and Related Compounds by Microbial Enzymes (미생물 효소에 의한 핵산 및 그의 관련물질의 분해에 관한 연구)

  • Kim, Sang-Soon
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.111-129
    • /
    • 1970
  • As a series of studies on the nucleic acids and their related substances 210 samples were collected from 76 places such as farm soil, compost of heap, nuruk and meju to obtain microbial strains which produce 5'-phosphodiesterase. From these samples total of 758 strains were isolated by the use of dilution pour plate method. For all isolated strains primary screening of the productivity of RNA depolymerase was performed and useful strains with regard to 5'-phosphodiesterase productivities were identified. For these useful strains optimum condition, the effect of various compounds on the activity of 5'-phosphodiesterase, and the optimum condition for enzyme reaction were discussed. The quantitative of 5'-mononucleotides produced by the action of 5'-phosphodiesterase was performed using anion-exchange column chromatography and their identified was done by paper chromatography, thinlayer chromatography, ultra violet spectrophotometry, and characteristic color reaction using carbazole and schiff's reagent. (1) Penicillium citreo-viride PO 2-11 and Streptomyces aureus SOA 4-21 from soil were identified as a potent 5'-phosphodiesterase producing strains. (2) Optimum culture conditions for Penicillium citreo-viride PO 2-11 strain isolated were found to be pH 5.0 and $30^{\circ}C$, and the optimum conditions for enzyme action of 5'-phosphodiesterase were pH 4.2 and $60^{\circ}C$. Best carbon source for the production of 5'-phosphodiesterase was found to be sucrose and ammonium nitrate for nitrogen source. Addition of 0.01% corn steep liquor or yeast extract exhibited 20% increase in the amount of 5'-phosphodiesterase production compared to the control. 5'-phosphodiesterase produced by this strain was activated by $Mg^{++},\;Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by EDTA, citrate, $Cu^{++},\;CO^{++}$. 5'-phosphodiesterase produced 5'-mononucleotide from RNA at a rate of 65.81%, and among the 5'-mononucleotides accumulated 5'-GMP only was found to have flavorous and the strain was also found lack of 5'-AMP deaminase. Productivity of flavorous 5'-GMP was found to be 186.7mg per gram of RNA. (3) Optimum culture canditions for the isolated Streptomyces aureus SOA 4-21 strain were pH 7.0 and $28^{\circ}C$, and the optimum conditions for the action of 5'-phosphodiesterase were pH 7.3 and $50^{\circ}C$. The best carbon source for 5'-phosphodiesterase production was found to be glucose and that of nitrogen was asparagine. Addition of 0.01% yeast extract exhibited increased productivity of 5'-phosphodiesterase by 40% compared to the non-added control. 5'-phosphodiesterase produced by this strain was activated by $Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by citrate, EDTA, $Cu^{++}$. It was also found that the strain produce 5'-AMP deaminase in addition to 5'-phosphodiesterase. For this reason although decomposition rate was 63.58% the accumulation of 5'-AMP, 5'-CMP, 5'-GMP and 5'-UMP occurred by the breakdown of RNA. In the course of these reaction 5'-AMP deaminase converted 60% of 5'-AMP thus produced into 5'-IMP and flavorous 5'-mono nucleotide production was significantly increased by this strain over the above mentioned one. Production rates were found to be 171.8mg per grain of RNA for 5'-IMP and 148.2mg per gram of RNA for 5'-GMP, respectively.

  • PDF

Changes in Growing Period and Productivity under Double Cropping of Spring Potato and Summer Cereals in Paddy Fields of Southern Korea (남부지역 논에서 봄감자와 하작물 이모작에 따른 생육기간 및 생산성 변화)

  • Seo, Jong-Ho;Hwang, Chung-Dong;Choi, Weon-Young;Bae, Hyeon-Kyung;Kim, Sang-Yeol;Oh, Seong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.459-468
    • /
    • 2019
  • Changes in growing periods and productivities of crops under double cropping of potato-rice, potato-soybean and potato-maize, were investigated at the Paddy Experimental Fields in Miryang City from 2015 to 2018. Spring potatoes planted in early March showed a yield of 2.1-2.3 ton/10a and a period of 90 days. In double cropping, growing period of rice, soybean, and maize was about 130, 125 and 115 days, respectively. The potato yield obtained was as much as 616, 330 and 815 kg/10a under double cropping with rice, soybean and maize, respectively. It is beneficial to sow the spring potatoes as early as possible to increase the yield and to secure the growing period of sequential crops. The introduction of summer medium-late variety grain crops into double cropping of spring potato and rice as well as into double cropping of spring potato and soybean/maize, was possible because of no sowing in the fall and plants were able to reach the heading growth stage before the safe heading limit of rice in particular. In the case of maize, the growth period was different according to the change in temperature over the year. The introduction of upland crops such as soybeans and maize instead of rice improved soil physicochemical properties in a short period of time, contributing to the increase of spring potato yields, but there was also a risk of damage by successive cropping for more than three years. Spring potato-maize showed higher yield in terms of starch production, and spring potato-soybean was found to be advantageous for net income.

The Effect Analysis of Vegetation Diversity on Rice-Fish Mixed Farming System in Paddy Wetland (벼-담수어 복합생태농업이 논습지 식생다양성에 미치는 영향 분석)

  • Kong, Minjae;Kim, Changhyun;Lee, Sangmin;Park, Kwanglai;An, Nanhee;Cho, Junglai;Kim, Bongrae;Lim, Jongahk;Lee, Changwon;Kim, Hyeongsu;Nam, Hongsik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • Organic farming practices including loach based ecosystem-farming have been demonstrated to be effective in conjunction with rice farming to increase yield and quality. This new form of farming combines agriculture and fishery and is quickly developing into a new industry. The current study investigated the effect of rice-fish mixed farming system on the vegetation-diversity function. Vegetation within the four study sites was surveyed and analyzed based on plant taxonomy. The vegetation survey demonstrated that 127 taxa of 38 families, 100 genera, 107 species, and 20 varieties occurred within the study sites. A total of 15 plant species taxa occurred in the rice-fish mixed paddy fields with a fish habitat and did not occur in the conventional paddy field lacking fish habitat. This difference is thought to arise from differences in moisture requirements for vegetation. Life form analysis demonstrated differences in hemicryptophytes, therophytes, and hydrophytes according to fish habitat. The naturalized plants identified were also determined to be species widely distributed throughout Korea. Frequency analysis demonstrated that the rice-fish mixed paddy fields with a fish habitat had a high ratio of both obligate and facultative wetland plants relative to the conventional paddy field. Based on the study results, it is likely that vegetation-diversity will increase with environment diversity. However, no statistical significance was observed according to paddy types. Future research should aim to identify additional environmental factors, including the existence of fish habitat, habitat area, depth of fish habitat, hydrological parameters, water quality, and paddy soil environment, to enhance vegetation-diversity and biocultural diversity.

Effects of Livestock Manure Application on Growth Characteristics, Yield and Feed Value of Sorghum-sudangrass Hybrid and NO3-N Leaching in Paddy Field (논에서 수수 X 수단그라스 교잡종 재배시 가축분뇨 이용이 생육특성, 수량, 사료가치 및 NO3-N의 용탈에 미치는 영향)

  • Lim, Young-Chul;Yoon, Sei-Hyung;Kim, Won-Ho;Kim, Jong-Geun;Shin, Jae-Soon;Jung, Min-Woong;Seo, Sung;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.233-238
    • /
    • 2006
  • The experimental work was conducted to determine the growth characteristics, yield and feed value of sorghum-sudangrass hybrid and $NO_{3^-}N$ leaching by application of various types of livestock manure (LM) at National Livestock Research Institute, Suwon, for 3years (2003-3005). The growth characteristics in chemical fertilizer (CF) was better than others in general. The growth characteristic of sorghum-sudangrass hybrid by the various type of LM was good in order of composted swine manure (CSM) > liquid swine manure (LSM) > composted cattle manure (CSM), whereas the growth characteristics by application level of LM was good in order of LM 100%+CF 25%>LM 75%+CF 25%>LM 100%. Dry matter(DM) yield in LSM and CSM increased by 23% and 18% respectively while DM yield in CCM decreased 24% as compared to CF. Moreover total digestible nutrients (TDN) in LSM and CSM increased by 24% and 18% respectively while TDN in CCM decreased 12% as compared to CF. Crude protein and relative feed value in LM decreased compared to those in CF. $NO_{3^-}N$ leaching by application level of LM showed that there was an increase in order of LM 100%+ CF 25%>LM 75%+CF 25%>LM 100%. Also the high concentration of $NO_{3^-}N$ occurred shortly after application of LM.

Physicochemical and Biological Properties of Constructed Small-scale Ponds for Ecological Improvement in Paddy Fields (논 생태 증진을 위해 설치된 둠벙의 물리.화학적 및 생물학적 특성)

  • Kim, Jae-Ok;Shin, Hyun-Sang;Yoo, Ji-Hyun;Lee, Seung-Heon;Jang, Kyu-Sang;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.253-263
    • /
    • 2011
  • This study was conducted to gain preliminary data for restoration and management of constructed small-scale ponds in paddy fields through analysis of their physicochemical and biological properties. A field survey was performed at 13 small-scale ponds located in paddy fields from August 2009 to October 2010. Structural properties, water quality, soil characteristics and fish fauna were measured. Results showed that small-scale ponds without frames might lose their function over time because of crumbling walls. Therefore, it is necessary for these ponds to have frames for soil protection and sustainable maintenance. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentration were higher than the water quality standard for agricultural water in small-scale ponds. In particular, TN concentration was 8.03 mg $L^{-1}$ and over 8 times the water quality standard because of the presence of livestock such as cows and pigs in the study areas. Sand, organic matter and available phosphorus contents of soil in small-scale ponds was 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$ and 12.8${\pm}$7.59 mg $kg^{-1}$, respectively indicating that sand and available phosphorus contents were suitable for plants in small-scale ponds, but organic matter contents was somewhat low in newly constructed small-scale ponds, and would take some time to stabilize for plant growing. Fish fauna was not diverse with only 4 species at all sites surveyed. Collected fishes share a common feature that they all inhabit paddy fields or canals with shallow water depth. In this study, all ponds were not linked to the streams and canals around them. It appears that connection to adjacent streams was the major factor controlling fish fauna in small-scale ponds. The results of statistical analysis were classified into three groups. Factor 1 was 26.3%, which shows a structural properties such as area and depth of small-scale pond. As for factor 2, it appears on 20.1%, showing water quality like a TP, suspended solids (SS) and COD. Small-scale ponds were classified into three groups by factor scores. Group I consisted of 6 small-scale ponds, which were larger than the others. Group III had higher water quality than the others. We conclude that the most important points to be considered for restoration and management of small-scale ponds is connection with adjacent streams or ditches and depth and size of the small-scale pond.

Physio-ecological Characteristics of Sagittaria trifolia L., a Perennial Weed in Paddy Field 1. Effect of Environmental Factors on Emergence of Tuber of S. trifolia (논 다년생잡초(多年生雜草) 벗풀의 생리생태적(生理生態的) 특성(特性)에 관한 연구(硏究) - 1. 벗풀 지하경(地下莖)의 출아특성(出芽特性))

  • Han, S.S.;Ryang, W.J.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 1992
  • Arrowhead (Sagittaria trifolia L.), a perennial weed dominant in paddy field, is considerably difficult to control by herbicides. The investigation on the effects of environmental factors on emergence of arrowhead tuber can aid for controlling this weed. The results exmined were as follows : From the results of emergence characteristics at different levels of temperature, arrowhead tuber could germinated at 15$^{\circ}C$-40$^{\circ}C$. The optimal temperature for basal emergence was ranged from 25 to 30$^{\circ}C$. Basal emergence at 15$^{\circ}C$ and 20$^{\circ}C$ began at 56 and 12 days after tuber plantation, respectively and were later than those at the optimal temperature. At the different levels of shading, all the tested tubers could emerged. The days required for basal emergence at 25% and 50% shading plots were shorter than those at 70%, 80% and non-shading plots. The basal emergence was more effective under blue and clear films than any other phyto-selective materials. Some of arrowhead tubers could not emerged under green, red and yellow films. On the soil pH, the basal emergence was best at soil pH 6.0 and 7.0. At soil pH 4.0, 5.0 and 8.0, the required days for emergence were longer than those at soil pH 6.0 and 7.0 and some of tubers could not emerged. Arrowhead tubers more then 0.5 g showed the shorter shooting days than those less than 0.5 g. Tubers were able to emerge at water depth ranging from 0 to 20 cm. At 3 cm and 5 cm water depth, the required days for basal shooting were shorter than those at any other levels of water depth. The emergence of basals was best at molding depth of 0 cm, and the rates at 3 to 5 cm of plantation depth were decreased. At 10 cm plantation depth, the shooting rate was significantly decreased.

  • PDF

Germination of Two Rice Cultivars and Several Weed Species (벼와 수종(數種) 논잡초(雜草)의 휴면성(休眠性)과 발아성(發芽性))

  • Kim, Soon-Chul;Moody, Keith
    • Korean Journal of Weed Science
    • /
    • v.9 no.2
    • /
    • pp.116-122
    • /
    • 1989
  • An experiment was carried out at the International Rice Research Institute in 1987 to understand the seed dormancy and germination habit of rice and several weed species. The germinability of the weed seeds just after harvest was variable depending on the species and ranged from 0 to 72%. Two rice cultivars, IR64(lowland type) and UPLRi-5(upland type) had higher than 95% in germination ability throughout the experimental period due to the fact that the rice seeds came from the harvest of the previous season and dormancy had already been overcome. The length of the storage period needed to overcome dormancy at room temperature($25{\pm}2^{\circ}C$) was about 50 days for Echinochloa glabrescens Munro ex Hook, f., more than 60 days for E. crus-galli ssp. hispidula (Retz.) Honda and 20 days for Ludwigia octovalvis(Jacq.) Raven. Seeds of E. colona(L.) Link, Monochoria vaginalis(Burm. f.) Presl, Fimbristylis miliacea(L.) Vahl and Cyperus difformis L. appeared to have no dormancy. Among the nine species M. vaginalis had the lowest germination of less than 1% throughout the experimental period. However, its seed germinated easily when planted in soil. The low germinability of E. glabrescens, E. crus-galli ssp. hispidula and L. octovalvis just after harvest could be overcome through pretreatment of seeds either by soaking in nitric acid(0.1N) for 1 day or removal of the hull in the grass species, the nitric acid treatment being superior. The results imply that germination habit of weed species varied depending on the species through their differential dormancy period or differential germination strategy.

  • PDF