• 제목/요약/키워드: 논문 분류

검색결과 12,592건 처리시간 0.038초

나이브 베이지안 분류기를 이용한 게시물 자동 분류를 위한 eCRM 에이전트 시스템 (eCRM Agent System for Articles Automatic Classification System based on Naive Bayesian Classifier)

  • 최정민;이병수
    • 전기전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.216-223
    • /
    • 2004
  • 최근 전자 상거래에서 사용하고 있는 게시판은 고객의 능동적인 참여로 운영되며, 게시물은 고객의 직접적인 의사를 들을 수 있는 인 바운드(Inbound)정보로서 다른 eCRM을 위한 고객 접점 채널 과는 성격이 다른 도구이다. 또한 게시판의 효과적인 운영은 게시판 자체의 신뢰도를 향상 시키고 나아가 전자 상거래 전체의 신뢰도를 높여 줄 수 있는 중요한 eCRM 도구이다. 그러나 현재 대부분의 전자상거래에서 운영하는 게시판은 기 분류된 카테고리를 고객이 직접 수동으로 선정하도록 되어 있고, 이렇게 임의로 분류되는 게시물에 대하여 체계적인 처리 과정 없이 답변이 이루어지기 때문에 답변을 하는데 많은 시간이 소요 되고 있으며, 정확한 답변이 이루어지지 않고 있는 실정이다. 따라서, 본 논문에서는 여러 가지 종류의 게시물에 대하여 나이브 베이지안 분류기를 이용하여 게시판의 기존 문제점의 해결과 효과적인 운영 그리고 게시물의 체계적인 분류 관리를 할 수 있는 게시물 자동 분류기를 설계하고 구현하였다. 아울러 문서 분류 학습 기법 중 대표적인 TFIDF. k-NN, 나이브 베이지안 기법들의 게시물 분류 성능을 측정하여 채택한 나이브 베이지안 분류기의 우수성을 확인 하였다.

  • PDF

경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선 (Improving of kNN-based Korean text classifier by using heuristic information)

  • 임희석;남기춘
    • 컴퓨터교육학회논문지
    • /
    • 제5권3호
    • /
    • pp.37-44
    • /
    • 2002
  • 문서 자동 분류란 입력 문서에 이미 정해져 있는 특정 범주를 할당하는 작업을 의미하며 이는 문서의 효율적, 체계적 관리를 위하여 그 필요성이 증가하고 있는 실정이다. 현재 국내외에서 기계 학습 방법을 이용한 문서 자동 분류에 대한 연구가 활발히 진행되고 있으나 대부분의 연구는 문서 분류기의 성능 향상을 위한 새로운 학습 모델 제안과 학습 모델간의 상호 비교 연구에 치중되어 있으며 특정 학습 모델을 이용한 분류 시스템의 최적화나 개선 방안에 대한 연구는 다소 미흡한 실정이다. 이에 본 논문은 kNN 학습 방법을 이용한 문서 분류 시스템의 성능 향상에 중요한 역할을 하는 파라미터를 정의하고 실험을 통해서 얻은 경험적 정보를 이용한 한국어 문서 분류기 성능 개성 방안을 제안한다. 실험 결과, 이웃 문서들간의 유사도 가중치를 사용하는 분류 함수, 분류 정보를 이용한 자질 선택 방법, 그리고 전역적 분류 방법이 높은 성능을 보였고, 분류 영역에 따라 신중히 결정된 k값을 사용한 지역적 방법도 많은 계산량을 필요로 하는 전역적 방법과 유사한 성능을 보일 수 있음을 확인하였다.

  • PDF

상향식 계층분류의 최적화 된 병합을 위한 후처리분석과 피드백 알고리즘 (Reinforcement Post-Processing and Feedback Algorithm for Optimal Combination in Bottom-Up Hierarchical Classification)

  • 최윤정;박승수
    • 정보처리학회논문지B
    • /
    • 제17B권2호
    • /
    • pp.139-148
    • /
    • 2010
  • 본 논문은 자동화된 분류시스템의 성능향상을 위한 것으로 오분류율이 높은 불확실성이 강한 문서들의 범주결정방식을 개선하기 위한 후처리분석 방법과 피드백 알고리즘을 제안한다. 전통적인 분류시스템에서 분류의 정확성을 결정하는 요인으로 학습방법과 분류모델, 그리고 데이터의 특성을 들 수 있다. 특성들이 일부 공유되어 있거나 다의적인 특성들이 풍부한 문서들의 분류문제는 정형화된 데이터들에서 보다 심화된 분석과정이 요구된다. 특히 단순히 최상위 항목으로 지정하는 기존의 결정방법이 분류의 정확도를 저하시키는 직접적인 요인이 되므로 학습방법의 개선과 함께 분류모델을 적용한 이후의 결과 값인 순위정보 리스트의 관계를 분석하는 작업이 필요하다. 본 연구에서는 경계범주의 자동탐색기법으로 확장된 학습체계를 제안한 이전 연구의 후속작업으로써, 최종 범주를 결정하기까지의 후처리분석 방법과 이전의 학습단계로 피드백하여 신뢰성을 높일 수 있는 알고리즘을 제안하고 있다. 실험결과에서는 제안된 범주결정방식을 적용한 후 1회의 피드백을 수행하였을 때의 결과들을 단계적이고 종합적으로 분석함으로써 본 연구의 타당성과 정확성을 보인다.

서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류 (Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques)

  • ;강명수;김철홍;김종면
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.19-26
    • /
    • 2012
  • 최근 멀티미디어 정보가 급증함에 따라 콘텐츠 관리에 대한 요구도 함께 증가되고 있다. 이에 오디오 분할 및 분류는 멀티미디어 콘텐츠를 효과적으로 관리할 수 있는 대안이 될 수 있다. 따라서 본 논문에서는 동영상에서 취득한 오디오 신호를 분할하고, 분할된 오디오 신호를 음악, 음성, 배경 음악이 포함된 음성, 잡음이 포함된 음성, 묵음(silence)으로 분류하는 정확도가 높은 오디오 분할 및 분류 알고리즘을 제안한다. 제안하는 알고리즘은 오디오 분할을 위해 서포트 벡터 머신(support vector machine, SVM)을 이용하였다. 오디오 신호의 분류를 위해서는 분할된 오디오 신호의 특징을 추출하고 이를 퍼지 클러스터링 알고리즘(fuzzy c-means, FCM)의 입력으로 사용하여 각 계층으로 오디오 신호를 분류하였다. 제안하는 알고리즘의 평가는 분할과 분류에 대해 각각 그 성능을 평가하였으며, 분할 성능 평가는 정확도율(precesion rate)과 오차율(recall rate)을 이용하였으며, 분류 성능 평가는 정확성(classification accuracy)을 사용하였다. 또한 오디오 분할의 경우는 이진 분류기와 퍼지 클러스터링을 이용한 기존의 알고리즘과 그 성능을 비교하였다. 모의 실험 결과, 제안한 알고리즘의 분류 성능이 기존 알고리즘 보다 정확도율과 오차율 면에서 모두 우수하였다.

분류오차유발 패턴벡터 학습을 위한 학습네트워크 (Learning Networks for Learning the Pattern Vectors causing Classification Error)

  • 이용구;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.77-86
    • /
    • 2005
  • 본 논문에서는 분류오차를 추출하고 학습하여 분류성능을 개선하는 LVQ 학습 알고리즘을 설계하였다. 제안된 LVQ학습 알고리즘은 초기기준백터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하는 학습네트워크이다. 분류오차가 발생되는 패턴백터로 추출하기 위하여 오차유발조건을 제안하였고, 이 조건을 이용하여 분류오차를 유발시키는 입력패턴벡터로 구성되는 패턴백터공간을 구성하여 분류오차가 발생되는 패턴백터를 학습시키므로 분류오차수를 감소시키고, 패턴분류성능을 개선하였다. 제안된 학습알고리즘의 성능을 검증하기 위하여 Fisher의 Iris 데이터와 EMG 데이터를 학습백터 및 시험 백터로 사용하여 시뮬레이션 하였고, 제안된 학습방식의 분류 성능은 기존의 LVQ와 비교되어 기존의 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

암분류기법과 터널굴착을 위한 발파설계에의 활용 (Rock Mass Classification and Its Use in Blast Design for Tunneling)

  • 류창하;선우춘;최병희
    • 화약ㆍ발파
    • /
    • 제24권1호
    • /
    • pp.63-69
    • /
    • 2006
  • 터널굴착이나 사면절취 등과 같은 굴착문제에 있어서 굴착방법을 결정하기 위해 대상암반에 대한 리핑 암이나 발파암의 구분이 우선되며, 다음에 발파에 의한 굴착방법이 선정되었을지라도 화약량 및 종류, 천공방법 등 발파설계를 위해서 추가적으로 발파암에 대한 세부적인 분류가 필요하다. 일반적으로 RMR 이나 Q 시스템과 같은 암반분류법이 많이 사용되고 있지만, 발파암에 대한 표준적인 암반분류법이 없으며, 국내에서도 발파암 분류에 대한 연구가 거의 전무한 상태로 발파암의 분류요소로 사용될 수 있는 요소를 구하기 위한 연구가 필요하다, 본 논문에서는 앞으로 국내에서 발파암 분류연구에 대한 방향제시를 위해서 발파와 암석의 역학적 특성, 지질구조와 불연속면의 특성과의 관계나 굴착과 관련된 암반분류에 대한 여러 논문사례를 통하여 발파암의 분류 요소와 분류방법 등을 분석한다.

특징 추출 알고리즘과 Adaboost를 이용한 이진분류기 (Binary classification by the combination of Adaboost and feature extraction methods)

  • 함승록;곽노준
    • 전자공학회논문지CI
    • /
    • 제49권4호
    • /
    • pp.42-53
    • /
    • 2012
  • 패턴 인식과 기계 학습 분야에서 분류는 가장 기본적으로 해결해야 하는 문제의 유형이다. Adaboost 알고리즘은 Boosting 알고리즘의 아이디어를 실제 데이터분석에 이용할 수 있도록 개량한 방법으로써, 단계를 반복하여 나온 여러 개의 약한 분류기와 가중치 값들의 조합으로 강한 분류기를 생성하는 두 개의 클래스를 분류하는 분류기이다. 주성분 분석법과 선형 판별 분석법은 높은 차원의 특징 벡터를 낮은 차원의 특징 벡터로 축소하는 특징 벡터의 차원 감소와 데이터의 특징 추출에도 유용하게 사용되는 방법들이다. 본 논문에서는, 주성분 분석법과 선형 판별 분석법을 이용하여 추출한 특징을 Adaboost 알고리즘의 약 분류기로 사용함으로써, 특징 추출과 분류를 동시에 하고, 인식률을 높이는 효율적인 Boosted-PCA와 Boosted-LDA 알고리즘을 제안한다. 마지막 장에서는, 제안하는 알고리즘으로 UCI Data-Set 중 2 Class-Data와 FRGC Data의 남자와 여자 영상에 대해서 분류 실험을 진행하였다. 실험의 결과로 제안한 Boosted-PCA와 Boosted-LDA 알고리즘이 기존의 특징 추출 알고리즘과 최근접 이웃 분류기, SVM을 이용한 분류기 방법과 비교하여 인식률이 향상됨을 보인다.

통계 시그니쳐 기반의 응용 트래픽 분류 (Statistic Signature based Application Traffic Classification)

  • 박진완;윤성호;박준상;이상우;김명섭
    • 한국통신학회논문지
    • /
    • 제34권11B호
    • /
    • pp.1234-1244
    • /
    • 2009
  • 오늘날의 네트워크에서는 다양한 응용의 등장으로 인해 트래픽이 복잡 다양해지고 있다. 이러한 상황 속에서 트래픽의 응용 별 분류에 대한 중요성은 날이 갈수록 증가하고 있다. 트래픽의 응용 별 분류에 대한 요구에 따라 기존에도 많은 연구가 이루어졌었다. 포트 기반의 분류, 페이로드 기반의 분류, 머신러닝 기반의 분류 방법들이 제안되었는데 아직 트래픽을 완벽하게 분류해내는 방법론은 개발되지 않은 실정이다. 최근 연구 중에는 플로우의 통계 정보를 이용한 방법론이 많이 연구되고 있다. 본 논문에서는 통계 시그니쳐를 통한 응용 트래픽 분류 방법론을 제안하고자 한다. 플로우 중 첫 N개의 패킷의 페이로드 크기와 방향을 이용하여 통계 시그니쳐를 생성하고, 이를 이용하여 응용 트래픽을 분류한다. 그리고 검증 시스템을 통해 본 분류 방법론이 높은 정확도의 분류 방법론이라는 것을 보인다.

SVM 워크로드 분류기를 통한 자동화된 데이터베이스 워크로드 식별 (Automatic Identification of Database Workloads by using SVM Workload Classifier)

  • 김소연;노홍찬;박상현
    • 한국콘텐츠학회논문지
    • /
    • 제10권4호
    • /
    • pp.84-90
    • /
    • 2010
  • 데이터베이스 시스템의 응용분야가 데이터웨어하우징에서 전자상거래에 이르기까지 광범위해지면서 데이터베이스 시스템이 대형화되었다. 이로 인해 데이터베이스 시스템의 성능 향상을 위한 튜닝이 중요한 논점이 되었다. 데이터베이스 시스템의 튜닝은 워크로드 특성을 고려하여 수행할 필요가 있다. 그러나 복합적인 데이터베이스 환경에서 워크로드를 식별하기는 어려우므로 자동적인 식별 방법이 요구된다. 본 논문에서는 데이터베이스 워크로드를 자동적으로 식별하는 SVM 워크로드 분류기를 제안한다. TPC-C와 TPC-W 성능 평가에서 자원할당 파라미터 변경에 따른 워크로드 데이터를 수집하여 SVM을 통해 분류 한다. SVM의 커널별 커널 파라미터와 오류 허용 임계치 값인 C의 조정을 통하여 최적의 SVM 워크로드 분류기를 선택한다. 제안한 SVM 워크로드 분류기와 Decision Tree, Naive Bayes, Multilayer Perceptron, K-NN 분류기의 분류 성능을 비교한 결과, SVM 워크로드 분류기가 다른 기계 학습 분류기보다 9% 이상 향상된 분류 성능을 보였다.

지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구 (Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System)

  • 박준형;박승민;이영환;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2011
  • 최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.