• 제목/요약/키워드: 논문 분류

검색결과 12,592건 처리시간 0.05초

베이지안 분류기를 이용한 신문기사 필터링 (A Study On Filtering of Newspaper Article by Using Bayesian Classifier)

  • 손기준;노태길;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.490-492
    • /
    • 2002
  • 본 논문에서는 필터링 문제를 이진 문서 분류 문제로 보고 신문기사 필터링에 베이지안 분류자를 사용한다. 신문 기사 필터링 문제에서 베이지안 분류자를 사용할 경우 학습 문서가 고정되어 있지 않기 때문에 여러 가지 파라미터를 사용하여 실험을 하였다. 실험 결과 베이지안 이진 분류기는 제한된 학습 문서에서 더 나은 성능을 보였고 해당 문서 집합에서 10%이상 비율의 문서를 사용자가 선택해야 함을 알 수 있었다.

  • PDF

빅데이터 기반 HS CODE 자동 제안 시스템 설계 (Design of Auto Navigation System for Apparel HS Code Based on Big Data Analysis)

  • 최신아
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2018년도 하계학술대회
    • /
    • pp.155-158
    • /
    • 2018
  • 수출입 기업이 관세 혜택을 받거나 올바른 관세를 측정하기 위해서는 통관 진행 시 올바른 품목 분류가 선행되어야 한다. 그러나 품목 분류의 기준이 1만개가 넘을 정도로 방대하여 신규 사용자나 품목에 이해가 부족할 경우 분류에 어려움이 따른다. 이러한 HS Code 분류의 한계점을 보완하기 위해 빅데이터 기반 이미지 분석을 통한 자동 제안 시스템을 목표로 하였다. 본 논문에서는 이미지 분석을 통한 HS Code 자동 제안시스템을 위한 수출입 품목 중 의류 품목의 수출입 품목에 국한하여 의류 HS Code 자동 분류 시스템을 설계하고, 제안한다.

  • PDF

SVM 기반 기술정보 문서분류를 위한 특징 선택 기법 (Feature Selection for Document Classifier for IT documents based on SVM)

  • 강윤희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.577-580
    • /
    • 2002
  • 인터넷상의 정보의 급증에 따라 필요한 정보를 발견하고 관련된 정보를 조직화하기가 더욱 어려워지고 있으며 정보 접근의 부하를 줄이기 위한 효율적인 문서 분류의 중요성 및 필요성이 증가하고 있다. 본 논문에서는 디렉토리 내의 학습 문서 집합을 기반으로 구성된 디렉토리 내의 대표 용어 집합으로 구성된 모델을 학습 및 분류하기 위해 SVM을 사용한다. 문서분류를 위해 정보통신 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 학습을 수행한 후 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특징을 표현하기 위해 벡터공간 모델을 사용하였고 이를 기반으로 성능 평가를 수행한다.

  • PDF

교사학습 알고리즘을 이용한 텍스트 분류 시스템 (A Text Classification System based on a Supervised Learning Algorithm)

  • 김진상;성정호;김성주
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
    • /
    • pp.421-430
    • /
    • 1998
  • 지식경영을 위한 다양한 대상 업무중에서 텍스트 데이터의 마이닝은 특히 중요하다. 그 이유는 텍스트 데이터가 양적인 면에서 가장 풍부하고, 또 발견할 수 있는 지식을 가장 많이 포함하고 있기 때문이다. 본 논문에서는 텍스트 데이터베이스에서 지식발견을 위한 한 과정으로 텍스트 데이터베이스 내의 텍스트들을 분류하는 기법을 기술한다. 특히 문서 분류 방법은 데이터베이스의 일부 데이터를 훈련, 예제로 간주하여 교사 학습 알고리즘을 통해 학습한 후 나머지 데이터를 이용해 분류 정확성을 검증 및 향상시킨다. 시험 데이터로는 인터넷의 뉴스그룹의 기사를 이용하였고, 시험 결과 분류의 정확성은 한글 및 영문 모두 최소 70% 이상으로 나타났다.

  • PDF

자연어 질의 유형판별과 응답 추출을 위한 어휘 의미체계에 관한 연구 (A Study on Word Semantic Categories for Natural Language Question Type Classification and Answer Extraction)

  • 윤성희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.141-144
    • /
    • 2004
  • 질의응답 시스템이 정보검색 시스템과 다른 중요한 점은 질의 처리 과정이며, 자연어 질의 문장에서 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 것이다. 본 논문에서는 질의 주-형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의 문장에서 의문사에 해당하는 어휘들을 추출하고 주변에 나타나는 명사들의 의미 정보를 이용하여 세부적인 정답 유형을 결정할 수 있는 질의 유형 분류 방법을 제안한다. 의문사가 생략된 경우의 처리 방법과 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법을 제안한다.

  • PDF

양상 뮤 논리를 위한 속성 명세 패턴 (Property Specification Patterns for Modal $\mu$-Calculus)

  • 전승수;권기현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (A)
    • /
    • pp.598-600
    • /
    • 2001
  • 본 논문에서는 양상 뮤 논리를 위한 속성 명세 패턴 연구를 통해 시제 논리에 대한 패턴 기반의 단일한 프레임워크를 제시한다. 본 연구에서는 Dwyer의 속성 명세 패턴 분류를 상태(S)와 행동(A)으로 세분화하고 이를 다시 강함(A)와 약함(E)으로 다시 세분했다. 이러한 의미 기반의 계층적 패턴 분류 체계를 통해 양상 뮤 논리의 속성 명세 패턴을 분석했으며 실제 모형 검사기에서 사용된 예제들의 패턴 분류에 적용했다. 그 결과 기존의 분류 체계보다 더 정확한 분류가 가능했을 뿐만 아니라, 속성 명세의 작성 및 이해가 용이하였다.

  • PDF

RPA 기법을 이용한 규칙의 확장 (Expanding Rule Using Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.489-492
    • /
    • 2004
  • 미지의 패턴을 분류하기 위해서 사용되는 메모리 기반 학습 기법은 만족할만한 분류 성능을 보여주고 있다. 하지만 메모리 기반 학습기법은 단순히 패턴과 메모리에 저장된 예제들 간의 거리를 기준으로 분류하므로, 패턴을 분류하는 처리과정을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 패턴을 분류하는 과정을 설명할 수 있는 규칙 추출 알고리즘과 또한 일반화 성능을 향상시키기 위하여 규칙의 조건을 확장하는 알고리즘을 제안한다.

  • PDF

IPTV 서비스 구성정보 관리 시스템 및 구성정보를 이용한 서비스 제공 방법 (IPTV service configuration using by legacy fulfillment management System)

  • 우신우;정병덕
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2006년도 추계학술대회
    • /
    • pp.570-575
    • /
    • 2006
  • 현재의 우리나라 SI 관련 산업 분류체계는 상세한 수준의 분류가 이루어지지 못하였을 뿐만 아니라 새로운 산업 및 산업계의 변화를 적시에 반영시키지 못하는 단점이 있다. 지속적인 SI 분야 산업 발전에 따라 보다 정확한 세부분야 별 생산성 및 매출액 등의 데이터가 필요할 뿐만 아니라 적극적인 수출품목으로의 육성을 위하여 국제적인 분류체계와도 일치성을 가져야 할 필요성이 대두되고 있다. 본 논문에서는 기존의 국내외 SI 산업 분류체계의 장단점을 분석한 후 새로운 SI 분류체계를 제안한다.

  • PDF

자동 판례분류를 위한 기계학습기법 (Machine Learning Technique for Automatic Precedent Categorization)

  • 장균탁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.574-576
    • /
    • 2007
  • 판례 자동분류 시스템은 일반적인 문서 자동분류 시스템과 기본적인 동작방법은 동일하다. 본 논문에서는 노동법에 관련된 판례를 대상으로 지지벡터기계(SVM), 단일 의사결정나무, 복수 의사결정나무, 신경망 기법 등을 사용하여 문서의 자동 분류 실험을 수행하고, 판례분류에 가장 적합한 기계학습기법이 무엇인지를 실험해 보았다. 실험 결과 복수 의사결정나무가 93%로 가장 높은 정확도를 나타내었다.

80년대 한국 통계의 현황과 장래: 통계이론을 중심으로

  • 우정수
    • Journal of the Korean Statistical Society
    • /
    • 제20권
    • /
    • pp.10-18
    • /
    • 1991
  • 한국통계학회 창립 20주년을 맞아 80년대의 한국통계의 현황과 장래의 나아갈 방향에 대해 의견을 교환하는 것은 뜻깊은 일이라 할 것이다. 그러나 통계이론에 관해 깊이 있는 의견을 제시하는 것은 쉬운 일은 아닌 것 같다. 10주년 기념호 통계학연구에서 백운붕 박사께서 통계이론의 범위를 광의의 수리통계학으로 해석하였듯이 필자도 통계이론을 이론통계학과 같은 차원의 넓은 의미로 사용하기로 한다. 한국통계에서의 통계이론의 현황을 살펴보기 위해서는 국제적인 현황을 먼저 살펴보아야 한다고 생각된다. 여기에는 여러가지 이유가 있겠지만 자연과학이라는 학문이 그러하듯이 통계학이란 학문 자체가 외국에서 발생되어 우리나라에 도입된 학문으로 우리나라에서 독자적으로 연구 교육되어온 학문이 아니기 때문에 당연히 국제적인 현황가 깊은 관계가 있으리라고 짐작되기 때문이다. 그러한 이유에서 먼저 1980년대에 Annals of Statistics와 JASA에 게재된 논문의 내용을 분류하여, 1970년대 후반기의 경향과 비교하여 1980년대의 흐름을 간략히 살펴보고자 한다. 물론 한국 통계의 현황을 알아보기 위해서는 한국통계학회지인 통계학연구를 분석해 보는 것이 무엇보다 필요하리라 생각된다. 그리고 한국통계학자들의 연구 동향을 고찰하기 위해서는 학술발표회의 논문을 분류하는 것이 타당하다고 생각된다. 따라서 본고에서는 1981년부터 1990년까지의 통계학연구지 논문과 1985년부터 1990년까지의 춘계 및 추계 학술논문발표회의 발표 논문을 분류하여 비교해 보고자 한다.

  • PDF