• Title/Summary/Keyword: 녹차 EGCG

Search Result 97, Processing Time 0.049 seconds

Green Tea (-)EGCG Induces the Apoptotic Death of Lung Cancer Cells via Activation of c-Jun N-terminal Kinase 1 and Activating Protein-1 (녹차의 (-)EGCG에 의한 사람 폐암 세포주 A549의 c-Jun N-terminal Kinase 1과 Activating Protein-1활성화를 통한 세포고사)

  • 박지선;신미경;손희숙;박래길;김명선;정원훈
    • Journal of Nutrition and Health
    • /
    • v.35 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • Green tea has been recognized as a favorite beverage for centuries in Easter and Westers cultures. Recently, anti-tumor effects of green tea constituents have received increasing attention. However, the mechanism of catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical insights of anti-tumor effects, (-)epigallocatechin-gallate(EGCG) of catechin was applied to human lung cancer A549 cells. (-)EGCG induced the death of A549 cells, which was revealed as apoptosis in DNA fragmentation assay. (-)EGCG induced the activation of caspase family cysteine proteases including capase-3, -8 and -9 proteases in A549 cells. Furthermore, (-)EGCG increased the phosphotransferase activity of c-Jun N-terminal kinase 1JNK 1), which further induced tole transcriptional activation of activating protein-1(AP-1) in A549 cells. We suggest that (-)EGCG-induced apotosis of A549 cells is mediated by signaling pathway involving caspase family cysteine protease, JNK1 and transcription factor, AP-1.

Antimicrobial activity of epigallocatechin gallate from green tea (Camellia sinensis) on pathogenic Salmonella Enteritidis in braised quail eggs (메추리알 장조림에서 녹차 Epigallocatechin gallate (EGCG)의 Salmonella Enteritidis에 대한 저장 온도에 따른 항미생물 활성)

  • Kim, Kwang-Yeop;Kim, Young-Ji;Kim, Hong-Seok;Song, Kwang-Young;Kim, Dong-Hyeon;Lee, Mi-Young;Kim, Eui-Su;Jeong, Heon-Sang;Seo, Kun-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.329-334
    • /
    • 2016
  • The inhibitory effect of epigallocatechin gallate (EGCG), one of the antioxidants in green tea (Camellia sinensis), against Salmonella Enteritidis was evaluated in commercial braised quail eggs at two temperatures (4 and $25^{\circ}C$). Although S. Enteritidis was dose-dependently suppressed by EGCG in pure culture at $25^{\circ}C$, it was not inhibited in the sauce or eggs at this temperature. At low temperature ($4^{\circ}C$), S. Enteritidis was inhibited in both the sauce and eggs by $400{\mu}g/mL$ EGCG. Thus, EGCG at an appropriate concentration could be a useful food additive for inhibiting S. Enteritidis in braised quail eggs at low temperatures.

The Change in Catechin Content of Korean Bosung Green Tea by Different Processes and Storage (한국산 보성 덖음 녹차의 가공 및 저장중의 카테킨류의 변화)

  • Suh, Bong-Soon;Suh, Hyang-Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.3
    • /
    • pp.409-416
    • /
    • 2007
  • This study investigated changes in the catechin and alkaloid contents of Bosung green tea during different manufacturing processes and storage periods, using HPLC and UV-VIS spectrophotometer analysis. For changes in the catechin and alkaloid contents by roasting technique, we found that EGCG, CG and GCG decreased just slightly by processes performed before roasting, rather than after roasting. In addition, theobromine, caffeine, and ECG changed minimally throughout all the processes. For changes in the catechin and purine alkaloid contents of the green tea leaves during storage, EGCG, ECG, and CAF decreased considerably in the green tea stored at temperatures of $5^{\circ}C$ and $25^{\circ}C$, and they decreased by $20{\sim}30%$ after storage for 1 year. However, a quantitative difference was hardly observed in the catechin and alkaloid contents regardless of storage temperature.

  • PDF

Effects of caffeic acid, chlorogenic acid, and EGCG on the methylation status of p16 gene in T-47D breast cancer cells (Caffeic acid, chlorogenic acid, EGCG가 유방암 세포 T-47D의 p16 유전자 DNA methylation에 미치는 영향)

  • Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.522-528
    • /
    • 2007
  • In the present investigation, we studied the modulating effects of caffeic acid, chlorogenic acid, and (-)-epigallocatechin-3-gallate(EGCG) on the methylation status of promoter regions of cell cycle regulator, p16, in human breast cancer T-47D cells. We demonstrated that treatment of T-47D cells with caffeic acid, chlorogenic acid, or EGCG partially inhibited the methylation status of the promoter regions of p16 genes determined by methylation-specific PCR. In contrast, unmethylated p16 genes were increased with the treatment of T-47D cells with $20{\mu}M$ of caffeic acid or chlorogenic acid for 6 days. Treatment of T-47D cells with 5, 20 or $50{\mu}M$ of EGCG increased the unmethylation status of p16 gene up to 100%, and the methylation-specific bands of this gene were decreased up to 50% in a concentration-dependent manner. The finding of present study demonstrated that coffee polyphenols and EGCG have strong inhibitory effects of the cellular DNA methylation process through increased formation of S-adenosyl-homocysteine(SAH) during the catechol-O-methyltransferase (COMT)- mediated O-methylation of these dietary chemicals or an direct inhibition of the DNA methyltransferases. In conclusion, various dietary polyphenols could reverse the methylation status of p16 gene in human breast T-47D cells.

Cancer Prevention Effect of Epigallocatechin-3-gallate through Regulate in C-terminal Src Kinase (CSK) Signaling Pathway (녹차성분 EGCG의 CSK 단백질 조절을 통한 암예방 효과)

  • Kim, Dae Yong;Choi, Bu Young
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • A great interest is emerging about green tea as a tool against human cancer proliferation or inflammation, as pointed out by recent reports describing the inhibitory action of epigallocatechin gallate (EGCG) on angiogenesis, urokinase, metalloproteinases, and induction of inducible nitric oxide synthase. We proposed that EGCG may regulate a multi target signaling having wider spectra of action than those actions of single enzymes. CSK (c-terminal Src kinase) protein is a non-receptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Based on the knowledge that CSK activation is important for cancer proliferation we hypothesized that CSK could be a target of EGCG. Here we showed that EGCG effectively suppressed the growth of CSK MEF cell when compare with CSK knockout MEF cell growth. These results indicate that EGCG could be used as a chemoprevention to modulate CSK signal pathway in inflammatory processes and tumor formation.

Effect of Epigallocatechin Gallate on Apoptosis in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate가 인체 유방암 세포인 MDA-MB-231의 세포사멸에 미치는 영향)

  • Hong, Eun-Jung;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1114-1119
    • /
    • 2008
  • Among the numerous polyphenols isolated from green tea, epigallocatechin gallate (EGCG) is a predominate and is considered to be a major therapeutic agent. To elucidate the mechanical insights of anti-tumor effect, EGCG was applied to human breast cancer MDA-MB-231 cells. We investigated the effect of EGCG on protein and mRNA expression of proteins related to cell apoptosis in MDA-MB-231 human breast cancer cell lines. We also identified caspase-3 activity. We cultured MDA-MB-231 cells in the presence of 0, 5, 10, and $20\;{\mu}M$ of EGCG. Protein and mRNA expression of bcl-2 were decreased dose-dependently in cells treated with EGCG. However, protein and mRNA expression of bax were increased (p<0.05). Caspase-3 activities were increased dose-dependently in cells treated with EGCG. These results suggest that EGCG induces cell apoptosis by increase of caspase activity through decreasing of protein and mRNA expression of bcl-2 and increasing of protein and mRNA expression of bax.

Characterization of Hemolytic Aeromonas sp. MH-8 Responding to the Exposure of Green Tea Catechin, EGCG (녹차 카테킨 EGCG의 노출에 따른 식중독 세균인 용혈성 Aeromonas sp. MH-8의 특성조사)

  • Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.228-236
    • /
    • 2016
  • The aim of this study was to characterize the hemolytic Aeromonas sp. MH-8 exposed to green tea catechin, epigallocatechin gallate (EGCG). Initially, the hemolytic Aeromonas sp. MH-8 was enriched and isolated from stale fish. Bactericidal effects of MH-8 exposed to EGCG ranging from 1 mg/mL to 4 mg/mL were monitored, and complete bactericidal effects were achieved within 3 h at 3 mg/mL and higher concentrations. SDS-PAGE with silver staining revealed that the amount of lipopolysaccharides increased or decreased in the strain MH-8 treated to different concentrations and exposing periods of EGCG in exponentially growing cultures. The stress shock proteins (70-kDa DnaK and 60-kDa GroEL), which might contribute to enhancing the cellular resistance to the cytotoxic effect of EGCG, were induced at different concentrations of EGCG exposed to cell culture of MH-8. Scanning electron microscopic analysis demonstrated the presence of irregular rod shapes with umbilicated surfaces for cells treated with EGCG. 2-DE of soluble protein fractions from MH-8 cultures showed 18 protein spots changed by EGCG exposure. These proteins involved in chaperons (e.g., DnaK, GroEL and trigger factor), enterotoxins (e.g., aerolysin and phospholipase C precursor), LPS synthesis (e.g., LPS biosynthesis protein and outer membrane protein A precursor), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. In consequence, EGCG was found to have substantial antibacterial effects against food-poisoning causing bacterium, hemolytic Aeromonas sp. MH-8. Also the results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on Aeromonas sp. MH-8.

Effect of Epigallocatechin Gallate on Inhibition of Cell Proliferation in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate가 인체 유방암 세포인 MDA-MB-231의 세포증식억제에 미치는 영향)

  • Hong, Eun-Jung;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.983-988
    • /
    • 2007
  • Epigallocatechin gallate (EGCG), a principal antioxidant derived from green tea, is one of the most extensively investigated chemopreventive phytochemicals. However, the effect of EGCG on proliferation in MDA-MB-231 breast cancer cell is not well known. We investigated the effect of EGCG on protein and mRNA expression related to cell proliferation in MDA-MB-231 human breast cancer cell lines. We cultured MDA-MB-231 cells in the presence of 0, 5, 10 and 20 ${\mu}m$ of EGCG. EGCG significantly inhibited the cancer cell proliferation (p<0.05). In MDA-MB-231 huamn breast cancer cell, EGCG lowered $ErbB_2$ and $ErbB_3$ protein as well as mRNA expression. In addition, protein and mRNA expression of phosphorylated Akt and total Akt were significantly decreased (p<0.05). We suggest that EGCG inhibits cell proliferation through $ErbB_2$, $ErbB_3$ and Akt cell signaling.

Green Tea (-) Epigallocatechin-gallate Induces the Apoptotic Death of Prostate Cancer Cells (녹차 (-)Epigallocatechin-gallate에 의한 전립선암 세포주 DU145 세포고사 기전)

  • 이지현;정원훈;박지선;신미경;손희숙;박래길
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2002
  • The mechanism by which catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical mights of anti-tumor effects, (-)epigallocatechin-gallate (EGCG) of catechin was applied to human prostate cancer DU 145 cells. Cell viability was measured by crystal violet staining. Cell lysates were wed to measure the catalytic activity of caspases by using fluorogenic peptide: Ac-DEVD-AMC for caspase-3 protease, Z-IETD-AFC for caspase-8 protease, Ac-LEHD-AFC for caspase-9 protease as substrates. The equal amounts of protein from cell lysate was separated on SDS-PAGE and analyzed by western blotting with anti-Fas antibody, anti-FasL antibody, anti-BCL2 antibody and anti-Bax antibody. (-)EGCG induced the death of DUl45 cells, which was revealed as apoptosis shown by DNA fragmentation. (-)EGCG induced the activation of caspase family cysteine proteases including caspase-3, -8 and -9 proteases in DU145 cells. Also, (-)EGCG increased the expression of Fas and Fas ligand (FasL) protein in DU145 colls. The expression level of BCL2 was decreased in (-)EGCG treated DU145 cells, whereas Bax protein was increased in a time-dependent manner. We suggest that (-)EGCG-induced apoptosis of DU145 cells is mediated by signaling pathway involving caspase family cysteine protease, mitochondrial BCL2-family protein and Fas/FasL.

Epigallocatechin Gallate Activates Phospholipase D in Glioma Cells (교세포에서 Epigallocatechin Gallate에 의한 포스포리파제 D의 활성화)

  • Kim, Shi-Yeon;Kim, Joonmo;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.924-932
    • /
    • 2003
  • Epigallocatechin-3 Gallate (EGCG), a major constituent of green tea, has attracted increasing interest because of its many reported health benefits. Here we demonstrate for the first time that EGCG stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-\gama1$ mutant, and was dependent on intracellular $Ca^{ 2+}$, and possibly involved $Ca^{ 2+}$ calmodulin-dependent protein kinase II (CaM kinase II). Interestingly, EGCG induced translocation of PLC-\gama1$ from the cytosol to the membrane and PLC-\gama1$interaction with PLD1. Taken together, these results demonstrate for the first time that in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving a PLC-\gama1$ (inositol 1,4,5-trisphosphate-$Ca^{ 2+}$)-CaM kinase II-PLD pathway.