• Title/Summary/Keyword: 녹생토

Search Result 4, Processing Time 0.019 seconds

Vegetation Effects and Properties on Green Soil Blended with Cement-Based Materials for Slope Stability (시멘트 기반 재료를 혼합한 사면 안정용 녹생토의 물성 및 식생 영향성)

  • Choi, Yoon-Suk;Kim, Joo-Hyung;Cho, Young-Keun;Kim, Ho-Kyu;Park, Ok-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.117-126
    • /
    • 2021
  • An experimental study was carried out to investigate the applicability of cement-based materials for green soil which is a soil for promoting plant growth. The results show that the shear strength of the green soil mixed with gypsum cement (No.3) was low, but the hardness (23.6mm) and pH value (7.4) was most suitable for the vegetation environment. In addition, the initial vegetation germination of green soil, which improved performance by adding a moisturizer, was slower than that of general green soil, and the conductivity value tended to be slightly higher. On the other hand, the slope adhesion of advanced green soil was high, and it was found that the plant growth rate and the regeneration capacity were superior after time passed.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Shear Strength and Erosion Resistance Characteristics of Stabilized Green Soils (토양안정재를 혼합한 녹생토의 전단강도 및 침식저항특성)

  • Oh, Sewook;Jeon, Jinchul;Kim, Donggeun;Lee, Heonho;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.45-52
    • /
    • 2015
  • With the rising interest in the environment, more attention on ecological restoration for damaged slope surface to restore its original state has been drawn. Generally, the most useful method is vegetation based spray work. This method uses green soil including sewage sludge, sawdust, paper sludge, and weathered granite soil. However, because there are neither accurate information nor test values about green soil, green soil is often lost by environmental factors such as rainfalls and strong winds. To solve the problem of green soil, it is necessary to prepare design standards about green soil, and conduct studies to deal with green soil loss in consideration of various variables including basic material property, soil quality of slope surface, and weather. This study was conducted in the mixture of green soil and eco-friendly soil stabilizer. With green soil, basic material property test and compaction test were conducted for the analysis on the basic characteristics of green soil. In the mixture with soil stabilizer at a certain ratio, we conducted shear strength test depending on the ratio in order to analyze the maximum shear strength, cohesion and the change in internal friction angles. Furthermore, in the mixture ratio of green soil and soil stabilizer, which is the same as the ratio in the shear strength test, an inclination of slope surface was made in laboratory for the analysis on erosion and germination rate. Finally, this study evaluated the most effective and economic mixing ratio of soil stabilizer to cope with neighboring environmental factors. According to the test, the shear strength of green soil increased up to 51% rely onto the mixing ratio of and a curing period, and its cohesion and internal friction angle also gradually increases. It is judged that the mixture of soil stabilizer was effective in improving shear strength and thereby increased the stability of green soil.