• Title/Summary/Keyword: 녹색 LED

Search Result 167, Processing Time 0.038 seconds

Morphology and Leaf Color Changes of Grafted Tomato Plug Seedlings Irradiated by Different Wavelengths of Photosynthetically Active Radiation during Low Light Irradiation Storage (저광 조사 저온 저장 중 PAR의 각 파장에 의한 토마토 플러그 묘의 형태 및 엽색의 변화)

  • Park, Jong-Seok;Fujiwara, Kazuhiro
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.283-287
    • /
    • 2008
  • To investigate the effects of different wavelengths of photosynthetically active radiation on the morphology and leaf color changes of a single tomato (Lycopersicon esculentum) seedling, we stored the seedling at $10{\pm}0.5^{\circ}C$ under eight different wavelengths (peak wavelengths; 405, 450, 505, 545, 600, 645, 680, and 700 nm) with a constant photosynthetic photon flux of $3{\mu}mol\;m^{-2}s^{-l}$ for 28 d. Under the 405, 450, and 505 nm wavelength conditions, the leaves of the seedlings showed vigorous shape with an upright morphology. Rachis elongation was suppressed and hence compact appearance was observed under the 450 and 505 urn conditions. Although the difference in leaf color between before storage and on 28 days after storage was observed under all wavelength conditions, the 405 and 700 um irradiations changed the leaf color to light green. Application of light-emitting diode (LED) light irradiated from around 450 to 545 nm can contribute to vigorous shape with an upright morphology of tomato seedlings during low light irradiation-low temperature storage.

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Growth and Photomorphogenesis of Cucumber Plants under Artificial Solar and High Pressure Sodium Lamp with Additional Far-red Light (태양광 파장 유사 조합광과 원적색광이 추가된 고압나트륨등 하에서의 오이의 생육과 광형태형성)

  • Kang, Woo Hyun;Kim, Jae Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.86-93
    • /
    • 2019
  • Plant growth and morphology are affected by light environments. The morphogenesis and growth of the plants growing in plant factories are different from those grown under sunlight due to the effect of far-red light included in sunlight. The objective of this study was to compare the morphogenesis and growth of cucumber plants grown under artificial sunlight, high pressure sodium lamp (HPS), and HPS with additional far-red light (HPS+FR). The artificial solar (AS) with a spectrum similar to sunlight was manufactured using sulfur plasma lamp, incandescent lamp, and green-reducing optical film. HPS was used as a conventional electrical light source and far-red LEDs were added for HPS+FR. The optical properties of each light source was analyzed. The morphogenesis, growth, and photosynthetic rate were compared in each light source. The ratio of red to far-red lights and phytochrome photostationary state were similar in AS and HPS+FR. There were significant differences in morphology and growth between HPS and HPS+FR, but there were no significant differences between AS and HPS+FR. SPAD was highest in HPS, while photosynthetic rate was higher at AS and HPS. Although the photosynthetic rate in HPS+FR was lower than HPS, the growth was similar in AS. It was because canopy light interception was increased by longer petioles and larger leaf areas induced by FR. It is confirmed that the electrical light with additional far-red light induces similar photomorphogenesis and growth in sunlight spectrum. From the results, we expect that similar results will be obtained by adding far-red light to electrical light sources in plant factories.

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps (방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석)

  • Lee, Jae Su;Nam, Sang Woon;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.400-407
    • /
    • 2013
  • This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

The Investigation and Conservation of Central Asia Wall Painting (No. 4074 and 4096) (중앙(中央) 아세아(亞細亞) 벽화(壁畵) 보존처리(保存處理)(I) - 벽화(壁畵)(본(本)4074, 본(本)4096)의 상웅조사(狀熊調査) -)

  • Kang, Hyung-tae;Yi, Yong-hee;Yu, Hei-sun;Kim, Yeon-mi;Jo, Yeon-tae;Aoki, Shigo;Yamamoto, Noriko;Ohbayashi, Kentaro
    • Conservation Science in Museum
    • /
    • v.3
    • /
    • pp.43-50
    • /
    • 2001
  • This article is about a joint project carried out by the National Museum of Korea and the Tokyo Cultural Properties Research Institute for the conservation of central Asia Wall painting that has been selected for the exhibition at the new Seoul National Museum of Korea at Yongsan. The investigation of the wall painting revealed very useful information. This includes the condition of the object, and the identification of evident damage, such as cracks, loss of pigment, plus materials and methods employed during the object's creation, as well as previous conservation treatment. The object was mainly made by applying plaster to the body (wall) that consisted of a mixture of soils and rice straws. Then, on the surface of the wall-painting, pigments were used to draw and to colour it. As a part of the investigation, radiocarbon dating was conducted using straw samples taken from the object. The result indicates that the object is probably dated form between the end of the 10th Century and the beginning of the 13th Century. The result of X-ray diffraction also revealed the composition of the pigments used on the surface. These are 1. gypsom [Ca(SO4)·2H2O], CaSO4 and Calcite (CaCO3) and Calcite (CaCO3) that were used for the white background. 2. Pb3O4 and led Arsenate [Pb(As2O6) that were used for the red colouring. 3. Cuprite (Cu2O), Arsenolite (As2O3) and Arsenic Oxide (As2O4) that were used for the green colouring.

hCG-induced Endoplasmic Reticulum Stress Leads to Activation of the IRE1/XBP1 Pathway in Mouse Leydig Tumor Cells (mLTC-1) (mLTC-1 세포에 hCG 처리에 의해 유도된 소포체 스트레스가 IRE1/XBP1 경로의 활성화 유발)

  • Park, Sun-Ji;Kim, Tae-Shin;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1039-1045
    • /
    • 2014
  • This study analyzed whether human chorionic gonadotropin (hCG) induces ER stress via the IRE/XBP1 pathway in mouse Leydig tumor (mLTC-1) cells. In a previous study, we demonstrated that the unfolding protein response (UPR) plays an important role in the expression of steroidogenic enzymes by modulating the ATF6 pathway, as well as ER stress-mediated apoptosis in hCG-stimulated Leydig cells. Although UPR signaling has been reported to regulate the IRE1/XBP1 pathway, it is not known whether hCG-induced ER stress in Leydig cells can activate the pathway. To investigate the activation of the IRE1/XBP1 pathway in mLTC-1 cells after hCG treatment, we performed a Western blot analysis to detect the phospho-IRE1 protein and an RT-PCR analysis to validate splicing of XBP1 mRNA. We used ER stress-activated indicator (ERAI) constructs for monitoring the activity of IRE1 and then analyzed by fluorescence microscopy and flow cytometry. The expression levels of the phospho-IRE1 protein markedly increased in response to the hCG treatment. In the mLTC-1 cells transfected with an F-XBP1-venus/F-$XBP1{\Delta}DBD$-venus construct, the hCG treatment led to the appearance of green fluorescent cells and detectable fluorescence in the nucleus and cytosol, respectively. In addition, splicing of XBP1 mRNA significantly increased after the hCG treatment. Taken together, these results indicate that hCG-induced ER stress leads to activation of the IRE1/XBP pathway in Leydig cells.

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat (밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과)

  • Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.307-317
    • /
    • 2021
  • In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.