• Title/Summary/Keyword: 노즐 경로

Search Result 54, Processing Time 0.023 seconds

Development of a Ginseng Surface Washing System (인삼 표면세척 시스템 개발)

  • Lee, Hyun-Seok;Jeong, Jin-Woong;Kim, Byeong-Sam;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.541-548
    • /
    • 2009
  • We developed a surface washing system for ginseng. The washing system was developed using different treatments and conditions and characterized in terms of product hardness, weight loss, and change in temperature and color. Optimal results were obtained using a surface washing system involving a washing conveyor speed of 1.0 L/min, a water pressure of $35\;kg/cm^2$, a washing nozzle angle of $40^{\circ}$, a washing height of 5 cm, a 1-sec reciprocating washing nozzle cycle, a dehydration wind velocity of 30 m/sec, and an internal drying temperature of $30-33^{\circ}C$. A surface washing system using a washing conveyor speed of0.8 L/min, a water pressure of $40\;kg/cm^2$, a washing nozzle angle of $40^{\circ}$, a washing height of 3 cm, a 1-sec reciprocating washing nozzle cycle, a dehydration wind velocity of 30 m/sec, and an internal drying temperature of $30-33^{\circ}C$ resulted in ginseng that was stained yellow.

Partial premixed combustion modeling of diffusion flame burner for SiO2 deposition as optical fiber cladding (광섬유 클래딩용 SiO2 증착을 위한 확산 화염 버너의 부분 예혼합 연소 모델링)

  • Park, Hyung-Bin;Han, Yoonsoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.365-371
    • /
    • 2019
  • In this study, the flame temperature distribution of the diffusion flame burner for SiO2 deposition was analyzed by the computational fluid analysis. This corresponds to the previous step for simulating the SiO2 preform deposition process for manufacturing optical fibers using environmentally friendly raw materials. In order to model premixed combustion, heat flow, convection, and chemical reactions were considered, and Reynolds-averaged Navier-Stokes equations and k-ω models were used. As a result, the temperature distribution of the flame showed a tendency to increase the distance from the nozzle surface to the maximum temperature when the flow rate of the auxiliary oxygen increased. In addition, it was confirmed that the temperature distribution due to incomplete combustion was large in the combustion reaction with a large equivalence ratio of the mixed gas.

Development of Numerical Model for Predicting Deposition Thickness Distribution during Spray Process for Carbon Nanotube Thin Films (탄소나노튜브 박막 제조를 위한 분무공정에서의 증착 두께 분포 예측 모델 개발)

  • Choi, Du-Soon;Kim, Duck-Jong;Jang, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.969-974
    • /
    • 2011
  • A carbon nanotube (CNT) is a cylindrical carbon nanostructure with good transport properties along the tube's axis. As an approach for realizing the practical use of CNTs, CNT networks are fabricated and their applications in many fields are investigated. To fabricate thin CNT-based films, several methods have been proposed and used. Among these methods, the spray coating method is a robust method for fabricating a large area. However, it is difficult to achieve uniformity in the CNT network. To solve this problem, it is necessary to understand the effect of the sprayprocess parameters on the deposition thickness distribution. In this study, a numerical model for predicting the deposition thickness distribution during the spray process was developed. The spatial deposition thickness distributions obtained according to various nozzle paths were analyzed using the developed numerical model.

A Study on Steady-State and Transient Simulation of Turboprop Engine Using SIMULINK® Model (SIMULINK® Model를 이용한 터보프롭엔진의 정상상태 및 천이모사 연구)

  • Gong, Chang Deok;Im, Gang Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.100-109
    • /
    • 2003
  • A performacne simulation model of the PT6A-62 turboprop engine using the $SIMULINK^R$ was proposed to predict transient and steady state behaviors. The $SIMULINK^R$ has several advantages such as user-friendliness due to the GUI(Graphic User Interfaces) and ease in the modification of the computer program. The $SIMULINK^R$ model consists of subsystems to represent engine gas path components such as flight initial subsystem, compressor subsystem, burner subsystem, compressor turbine subsystem, power turbine, exhaust nozzle subsystem and integrator subsystem. In addition to subsystems, there are search subsystems to find an appropriate operating point by scaling from the 2-D components look-up table, Gasprop Subsystem to calculate the gas property precisely. In case of steady state validation, performance results analyzed by the proposed $SIMULINK^R$ model were agreed well with the analysis results by the commercial GASTURB program. Moreover in validation of the transient model, it was found that performance simulation results by the proposed model were reasonable agreement with analysis results by the well-proved computer program using FORTRAN.

An Experimental Study on the Damage of the Data Process Equipment When $CO_2$ is Discharged ($CO_2$ 소화설비 방사시 정보저장장치의 저온손상에 관한 연구)

  • 이수경;김종훈;김영진;최종운
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.19-26
    • /
    • 1999
  • $CO_2$ extinguishing system is the most $\phi$pular among the gas extinguishing system. $CO_2$ is usually stored with liquified state. But, it gasifies at the tip of nozzle when $CO_2$ was released through the pipe and head. A ro$\alpha$n temperature is very low when $CO_2$ was released. So electrical instrument, magnetic storage equipment and memory semiconductor are electrically or physically injured by cooling effect in a few minutes. So, we intend to find out temperature profile and electrical damage in compartment area, and supply basic d data for research and making standards and code through the full scale experiment. As result of experiment on the damage due to cooling effect from $CO_2$ extinguishing system, i instantaneous discharging temperature. was $-82.5^{\circ}C$ in average. An average temp. in the compartment after discharging $CO_2$ was $-40^{\circ}C$.

  • PDF

A Study on the Effectiveness of Injection in Environmentally-Friendly Bio-grouting with Soil Conditions (지반조건에 따른 친환경 바이오그라우팅 주입 효과에 관한 연구)

  • Kim, Daehyeon;Park, Kyung-Ho;Kim, Min-Seok;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4276-4283
    • /
    • 2015
  • The purpose of this research is to identify the effectiveness of injection with soil conditions by injecting CaCO3(created by microorganism reaction), which was recreated with equipment in similar situ condition. To analyze our research, we made 2 cases of single-layer (SP, SW) in D 150mm ${\times}$ H 300mm. Layers were made by RC 70, 80, 85, 90, 95% of soil condition. We measured uniaxial compression strength with cone penetrometer and watched injection range by checking a bulb formation around the injection nozzle. As a result, the relative compaction(RC) in more 85% were not injected in SW, we could identify the effect of bio-grouting technology on ground in relative compaction(RC) of injection ratio and cementation range.

Preparation of High Purity Ammonium Dinitramide and Its Liquid Mono-propellant (암모늄 디나이트라마이드염의 합성 및 액상연료화 연구)

  • Kim, Wooram;Park, Mijeong;Kim, Sohee;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.591-596
    • /
    • 2019
  • A recently developed propellant, ammonium dinitramide (ADN, $NH_4N(NO_2)_2$ is stable and safe at an ambient condition. However, it requires high purity for practical applications. A very little quantity of foreign impurities in ADN may cause clogging of thruster nozzles and catalyst poisoning for the use of a liquid propellant. Thus, several purification processes for precipitated ADN particles such as repetition extraction, activated carbon adsorption and low-temperature extraction were presented in this study. The purifying methods helped to improve the chemical purity as evaluated by FT-IR and UV-Vis spectroscopy in addition to ion chromatography (IC) analyses. Among the purification processes, adsorption was found to be the best, showing a final purity of 99.8% based on relative quantification by IC. Thermal analysis revealed an exothermic temperature of $148^{\circ}C$ for the synthesized liquid monopropellant, but rose to $188^{\circ}C$ when urea was added.

Design on the interfacing between auto-pilot and water-jet drive system (Auto pilot 와 water jet drive system 간의 Interface 설계)

  • Jin, Hyong-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absolbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceletion efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto Pilot and water jet are defferant, we need the system to communicate between each system. We propose the interface system which communicate between Auto pilot and water jet efficiently in this journal.

  • PDF

A embodiment of the interface module for feed back control between auto-pilot with water-jet system (오토파일럿과 워터젯시스템의 피드백 제어계 인터페이스 모듈의 구현)

  • Oh, Jin-Seong;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1108-1111
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absorbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceleration efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto pilot and water jet are different, we need the system to interface between each system. We designed the interface that efficiently digital feed back control embedded module between auto pilot and water jet system in this paper.

  • PDF

A Numerical Study Of Flow Control Valve to Flow Characteristics by Pressure Difference for Hydrogen Station (수소충전소용 유량제어 밸브의 차압에 따른 유동특성에 대한 수치해석적 연구)

  • Nam, Chung-Woo;Kim, Rak-Min;Kim, Hyun-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • With the recent growing interest in eco-friendly cars, as interest in eco-friendly cars increases, interest and purchase of hydrogen fuel cell vehicles that do not emit pollutants are increasing. Recently, the government is supporting the expansion of hydrogen charging station and localization of core parts according to the government's hydrogen energy dissemination policy. In this study, the flow characteristics of the hydrogen flow control valve were investigated. As the differential pressure increases, the mass flow rate and flow coefficient tend to be different from the volume flow rate. And it was confirmed that it affects the hydrogen temperature due to the nozzle effect in the bottleneck section, and the change in density affects the mass flow rate.