• Title/Summary/Keyword: 노이즈 흡수

Search Result 33, Processing Time 0.032 seconds

FEM Analysis of Conduction Noise Absorbers in Microstrip Line (마이크로스트립 라인에서 유한요소법을 이용한 전도노이즈 흡수체의 성능해석)

  • Kim, Sun-Tae;Kim, Sun-Hong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.242-245
    • /
    • 2007
  • Conduction noise attenuation by composite sheets of high magnetic and dielectric loss has been analyzed by using electromagnetic field simulator which employs finite element method. The simulation model consists of microstrip line with planar input/output ports and noise absorbers (magnetic composite sheets containing iron flake particles as absorbent fillers). Reflection and transmission parameters $(S_{11}\;and\;S_{21})$ and power loss are calculated as a function of frequency with variation of sheet size and thickness. The simulated value is in good agreement with measured one and it is demonstrated that the proposed simulation technique can be effectively used in the design and characterization of noise absorbing materials in the RF transmission lines.

A Study on the Evaluating Characteristics of EM Wave Absorber for Noise Suppression from PCB (PCB상의 노이즈 제거용 전파흡수체의 특성 평가에 관한 연구)

  • Kim, Dong-Il;Choi, Dong-Soo;Yoon, Sang-Gil;Yoo, Gun-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.509-515
    • /
    • 2009
  • In this paper, we analyzed and evaluated noise suppression characteristic of EM wave absorber. We fabricated several absorber samples in different ratios of Sendust and Amorphous with CPE(Chlorinated Ploy-ethylene) as binder and calculated material constants by measured S-parameter. Then, we confirmed that the noise suppression characteristic of EM wave absorbers using microstrip line. A microstrip line with EM wave absorber placed on its top was used to evaluate the conduction noise suppression. As a result, noise suppression effect show different charateristic by changing relative permeability. Therefore, EM wave absorber using Sendust show excellent characteristic. In particular the maximum power absorption over 90 % in 1.7 GHz to over 6 GHz has obtained when composition of Sendust:CPE=80:20wt.%.

PCB상의 전자파노이즈 억제용 전파흡수체 개발

  • Choe, Dong-Su;Kim, Dong-Il;Choe, Dong-Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.13-15
    • /
    • 2010
  • 본 논문에서는 Flake Sendust 금속분말을 이용하여 ISM 대역에서 PCB 노이즈 억제용 전파흡수체를 설계 제작하고 검토한 결과를 보고한다. 먼저 자성손실 재료인 Sendust 금속분말을 사용한 전파흡수체의 특성을 예비 시험한 후, 그 특성을 개선하기 위하여 Flake Sendust 분말과 CPE의 조성비를 각각 60 : 40 wt.%, 70 : 30 wt.%, 80 : 20 wt.%로 하고, 두께 1 mm, 2 mm의 sheet형 전파흡수체 샘플을 제작하였다. Network Analyzer를 이용하여 제작한 샘플의 반사계수를 측정하고, -2법으로 재료정수(복소비유전율, 복소비투자율)을 계산하였다. 계산된 재료정수값을 이용하여 최적의 전파흡수체를 설계하여, 조성비 Flake Sendust : CPE = 70 : 30 wt.%, 두께 0.55 mm의 전파흡수체를 제작하였다. 이 전파흡수체는 2.44 GHz 대역에서 5.45 dB의 흡수능을 나타냄으로써 목표치인 5 dB를 달성하였다.

  • PDF

Measurement and Analysis of Conduction Noise through Microstrip Line Attached with Composite Sheets of Iron Particles and Rubber Matrix (마이크로스트립 전송선로를 이용한 순철 압분체-고무 복합재의 전도노이즈 흡수특성 측정 및 해석)

  • Kim, Sun-Tae;Oh, Byung-Ki;Kim, Sung-Soo;Cho, Han-Sin;Lee, Jae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.174-179
    • /
    • 2004
  • Attenuation of conduction noise through microstrip line attached with the high lossy iron flakes-rubber composites has been investigated in GHz frequencies. Microstrip line was designed with characteristic impedance of 50 $\Omega$ and a length corresponding to the center frequency of 3 GHz. Iron flakes were fabricated by mechanical forging of spherical iron powders using an attrition mill. The fabricated microstrip line shows a ideal propagation characteristics of S$\sub$11/ < -60 dB and S$\sub$21/ = 0 dB. Attaching a noise absorbing sheet on the microstrip line, S$\sub$11/ increases to about -10 dB and S$\sub$21/ decreases to -20~-60 dB depending on the length of absorbing sheet. The calculated power loss is as high as 80% in the frequency range 2~8 GHz. It is suggested that the most critical material parameter is magnetic loss for the enhancement of noise attenuation.

Heat Resistant Electromagnetic Noise Absorber Films Using Poly(amide imide)/Soft Magnet Composite (내열성 전자기 노이즈 흡수 폴리(아미드-이미드)/연자성체 복합체 필름)

  • Han, Ji-Eun;Jeon, Byung-Kuk;Goo, Bon-Jae;Cho, Seung-Hyun;Kim, Sung-Hoon;Lee, Kyung-Sub;Park, Yun-Heum;Lee, Jun-Young
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We fabricated the electromagnetic (EM) noise absorber films for high temperature use by blending a soft magnetic powder with poly(amide imide) (PAI). The EM noise absorber films of PAI/soft magnet composite were prepared by casting the solution of poly(amide amic acid)/soft magnet powder into glass substrate with casting applicator device and then thermal imidization. The obtained films were fully characterized and their physical properties including thermal behavior, thermal stability and mechanical properties were studied. The EM noise absorption ability was also investigated using micro-strip line method. At 1 GHz, the power loss of composite film with 150 ${\mu}m$ thickness was about 25%.

The Removal of Noisy Bands for Hyperion Data using Extrema (극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거)

  • Han, Dong-Yeob;Kim, Dae-Sung;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor's instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.

Microwave Absorbing Properties of Fe-Si-Al Alloy Flaky Powder-Rubber Composites (Fe-Si-Al 합금 분말 · 고무 복합 자성체의 전파 흡수 특성)

  • Lee Kyung-Sub;Yoon Yeo-Choon;Choi Gwang-Bo;Kim Sung-Soo;Lee Jun-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.228-234
    • /
    • 2005
  • A magnetic composite as noise absorber of quasi-microwave band was developed. The Fe-Si-Al alloy powder were forged by attrition mill to get flaky shape. The magnetic composite sheet was fabricated in which powders are dispersed in polymer and aligned in the direction perpendicular to electromagnetic wave propagation. The permittivity of magnetic composite is increased as forging time increasing, while the permeability is decreased slightly. The maximum attenuation peak of reflection loss is shifted to lower fiequency range as milling time increasing, and the value of maximum attenuation peak is to get smaller gradually. From these result, we could designed a noise absorber sheet (t=1.0 mm) for quasi-microwave band, which is impedance matched at 1.4 GHz with respect to -8.2 dB reflection 1055.

Effects of Annealing on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 합금 어닐링 효과)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2013
  • The soft magnetic Fe-Si-Cr flakes with the thickness of about 1 ${\mu}m$ were annealed at 500 and $700^{\circ}C$ for 1 h, and the composite sheets for electromagnetic wave noise absorber available for quasi-microwave band were fabricated by using these annealed flakes and polymer. Further the power loss characteristics of the composite sheets was investigated to clarify the annealing effect on electromagnetic wave absorption properties. The power loss decreased in the frequency range of several GHz when the annealed flakes were used as compared to the sheet using the as-milled FeSiCr alloy flakes. Moreover the sheets using annealed flakes exhibited lower value of real and imaginary part of complex permeability. These inferior electromagnetic wave absorption properties of the composite sheets using annealed alloy flakes were considered to be obtained by the enhanced eddy current effect upon annealing-induced recovery of microstructure and resulted low complex permeability.

Development of EM Wave Absorber for Suppression Noise from PCB Using Sendust and Mn-Zn Ferrite (Sendust와 Mn-Zn Ferrite를 이용한 PCB로부터의 전자파 방사 억제용 전파흡수체 개발)

  • Yoon, Sang-Gil;Kim, Dong-Il;Song, Young-Man;Park, Soo-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, we designed and fabricated the EM wave absorber consists of Sendust and Mn-Zn ferrite for suppressing EM wave noise from PCB in ISM(Industrial, Scientific and Medical) band of 2.4 GHz. We fabricated several samples in different ratios of Sendust to Mn-Zn ferrite with CPE(Chlorinated Ploy-ethylene) as binder and confirmed that optimum composition ratio of absorbing materials was Sendust. Mn-Zn ferrite : CPE=70:5:20 wt.%. The absorbing abilities were simulated according to different thickness of EM wave absorber as the function of material constants calculated by measured data. Measured absorption ability was analyzed and compared with simulated result. The simulated result agree well with the measured ones. As a result, the developed EM wave absorber with thickness of 0.85 mm has absorption ability of 5.4 dB at 2.4 GHz and over 3 dB in frequency rage of 1.4$\sim$4.1 GHz.