• Title/Summary/Keyword: 노동 절감

Search Result 193, Processing Time 0.02 seconds

A Study on Labor Saving in Paddy Rice Cultivation (논벼재배에 있어서의 노동력 절감에 관한 연구)

  • Young-Chul Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.11
    • /
    • pp.81-97
    • /
    • 1972
  • Experiments and investigations were done basically and practically for the purpose of labor saving in paddy rice cultivation especially on Homizil i.e. hoeing and herbicide, 1969. 8 concrete tanks were established on the open base of Keon Kuk University for comparison of percolation, dissolved oxygen and yield test of rice in the paddy plot of tank. The dimension of the bottom of each tank is square meter. Each of the 4 of the 8 tanks is 21cm in height and each of the remaining 4 tanks is 36cm. Each tank has a system that comprises 2 sets of tubes, each of which has 20 holes of 5mm in diameter scattered every side and is covered with nylon cloth taking water in the tank. One set consists of 4 P.V.C tubes. The first set is situated 8cm below the top of the tank and the second set is located at bottom layer inside the tank. The 4 tubes of each set are combined together and led to the glass tube which protects from inside to outside. And this inside-outside glass tube is connected to the small rubber tube. Also a glass tube is set 4cm below the top of the tank. Paddy loam was filled on sand in each of the tanks in the soil depth of either 15cm or 30cm. The depth of sand was 5cm in the soil depth of 15cm and 10cm in the soil depth of 30cm. (Fig. 1, 2 and 3). The paddy rice was grown in the tank. The percolation of water, the dissolved oxygen and the yield of rice were observed in the tank. And the dissolved oxygen was detected by Winkler method. A sandy paddy field of heavy percolation was selected at the field of the National Agricultural Material Inspection Center in Seoul. It was divided into 9 plots. These plots were given 3 treatments: (A) not hoeing, (B) hoeing one time and (C) hoeing two times. These treatments were replicated 3 times along the latin square design. The paddy rice was grown and sprayed with Stam F-34 in the all plots for the purpose of killing weeds before hoeing. The two types of paddy of field i.e. one for normal percolation and the other for ill drainage were selected at Iri Crop Experiment Station, Jeonla-Bukdo. Each field was divided into 24 plots for 8 treatments. They are: (A) not hoeing; (B) hoeing one time; (C) hoeing two times; (D) not hoeing but treating with herbicide, Pamcon; (E) hoeing one time and weeding two times also treating with herbicide, Pamcon; (F) hoeing two times and weeding one time a], o treating with herbicide, Pamcon; (G) hoeing two times and weeding two times also treating with herbicide, Pamcon, ; (H) usual manner. The labor hours and expenses needed for weeding in the paddy by hoeing were investigated in a farmer at Suwon and the price of herbicide and the yield of rice were taken out at Iri, Jeonla-Bukdo. The results obtained from the above experiments and investigations are as follows: 1. The relationship between percolation and dissolved oxygen shows that a very small amount of oxygen is detected in the soil water under 2cm below surface of earth in the paddy even when percolation is over 4.0cm per 24 hours (Tab. 1). 2. The relationship between percolation and yield of rice shows that the yield of rice increases in the percolation of 0cm and 1.5cm per 24 hours and decreases in the percolation of 2.5cm and 3.4cm in the plot of the 15cm ploughing depth and increases in the percolation of 1.4cm and 3.0cm and decreases in the percolation of 0cm and 4.0cm in the plot of 30cm ploughing depth (Tab. 1 and Fig. 5). 3. The yield of paddy weeded with Stam F-34 in the sandy field of heavy percolation in Seoul was 3.02 tons in the plot of not hoeing, 2.99 tons in hoeing one time and 3.05 tons in hoeing two times per hectare (Tab. 5). 4.1). 4. 1) The yield of rice per 10 ares in the field of normal percolation at Iri was 338kg in not hoeing, 379kg in hoeing one time, 383kg in hoeing two times, 413kg in spraying herbicide, Pamcon, and not hoeing, 433kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 399kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 420kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 418kg in usual manner (Tab. 6-1). 2) The yield of rice per 10 ares in the field of ill drainage at Iri was 323kg in not hoeing, 363kg in hoeing one time, 342kg in hoeing two times, 388kg in spraying herbicide, Pamcon, and not hoeing, 425kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 427kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 449kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 412kg in usual manner (Tab. 6-2). 5. 1) The labor hours for weeding by hoeing was 37.1 hours but 53.5 hours if hours for meal, smoking and so on are included, and the expenses including labor cost needed for weeding by hoeing in the paddy rice was 2, 346 Won per 10 ares at Suwon (Tab. 7). 2) The labor hours for weeding by spraying herbicide with hand sprayer in the paddy rice was about 5 hours per 10 ares at Suwon and the expenses for weeding by spraying herbicide in the paddy rice was 750 Won but 1130 Won if the loss by decrement of rice in the paddy field of ill drainage per 10 ares is calculated in estimation at Iri (Tab. 8). From these observations and investigations it is known that using of some kinds of herbicides Saves labor and expenses of weeding, almost without giving damages to the rice itself, in the field of normal or heavy percolation comparing usual manner of hoeing.

  • PDF

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Simultaneous Production System of Silkworm Dongchunghacho and Male Pupae Using Both Parent Sex-limited Larval Marking Variety (한성반문잠품종을 이용한 누에동충하초 및 숫번데기의 동시 생산체계)

  • Ji, Sang-Duk;Kim, Nam-Suk;Kang, Pil-Don;Sung, Gyoo-Byung;Hong, In-Pyo;Ryu, Kang Sun;Kim, Young-Ki;Nam, Sung-Hee;Kim, Mi-Ja;Kim, Kee-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • This study was conducted to confirm the mass production of male pupae and sex-limited larval marking variety as a host for synnemata production of Isaria tenupes in RDA(Rural Development Administration). Silkworm pupation, infection rate and synnemate formation of I.tenuipes were examined. Among the silkworm varieties tested, male Hansaengjam showed the highest pupation rate at 98.7%. I. tenuipes infection rate of larvae of newly-exuviated 5th instar silkworm was 83.7 ~ 90.4% in the spring rearing season and 91.7 ~ 96.6% in the autumn rearing season. Synnemata production of I. tenuipes was execellent in female Yangwonjam with an incidence rate of 99.5% followed by male Yangwonjam(99.5%) and Baegokjam(99.4%) in the spring and autumn rearing season. Synnemata living weight ranged from 0.93 ~ 1.25 g in the spring rearing season. The female Hansaengjam had the heaviest synnemata weight(1.25 g). Synnemata dry weight ranged from 0.27 ~ 0.35 g in the spring rearing season. The female Yangwonjam had the heaviest synnemata weight(0.35 g).