• Title/Summary/Keyword: 노광기

Search Result 23, Processing Time 0.021 seconds

A Study on the Measurement of Dill and Mack Model Parameters of a Photoresist (포토레지스트의 Dill 및 Mack 모델 파라미터 측정에 관한 연구)

  • Park, Seungtae;Kwon, Haehyuck;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.324-330
    • /
    • 2022
  • We measured the Dill and Mack model parameters that determine the exposure and development characteristics of photoresists, respectively. First, photoresist samples were prepared while altering the exposure dose, and changes in transmittance were measured. Analyzing these results, the Dill model parameters A, B, and C were determined. In particular, the exact solution of the Dill model equation was used to determine the C parameter. In addition, changes in thickness were measured as a function of development time for different exposure doses, and the Mack model parameters Rmin, Rmax, a, and n were determined using the results. We also determined parameter values for the reduced Mack model that uses only three parameters, Rmin, Rmax, and n. The root mean square error between the model predictions and the measured values for the photoresist thickness was found to increase slightly compared to the case using the original Mack model with four parameters.

서울광학산업(주), 4mm급 대형 가공기 개발 성공

  • Park, Ji-Yeon
    • The Optical Journal
    • /
    • s.111
    • /
    • pp.34-35
    • /
    • 2007
  • 1974년 렌즈와 프리즘 가공으로 시작, 현재는 고난이도의 각종 비구면 생산과 대형물 가공업체로 변모한 서울광학산업(주)(대표.이지웅/www.seoulopt.co.kr)이 최근에는 총 소요비용 10억원 이상을 투자하고 4년여의 시간과 공을 들여 직경 4m급의 대형 가공기 개발에 성공했다. 가까운 일본의 경우 이보다 크고 작은 규모의 노광기 몇 대가 있긴 하나 관련 설비 구축 정도는 일본과 비교해 서울광학산업쪽이 월등하다는 평을 받을만큼 기술과 설비투자에 오랜 기간 노력을 경주해왔다.

  • PDF

Numerical Analysis for Cooling Condition of a Lamp House in the Exposure Device by Response Surface Methodology (반응표면분석법을 이용하여 노광기 램프하우스의 냉각조건 수치해석)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1265-1271
    • /
    • 2014
  • The lamp cooling system of the exposure has effect on the exposure efficiency and device lifetime. In this paper, we performed the numerical analysis about the thermal flow in the lamp housing of the exposure apparatus for the cooling air inflow rate. We set up the velocity of cooling air of side and bottom as the independent variables because cooling performance of the lamp housing is affected by the velocity of the cooling air side and bottom. The cooling state of lamp housing depend on three dependent variables; the temperature at top mirror and exhaust gas, ellipsoidal mirror. Response surface methodology was used in order to establish the efficient cooling analysis plan. The regression equation predicting the variables temperature of lamp housing according to the cooling air velocity were drawn. The velocity of cooling air to reach the optimum temperature of the lamp housing were derived.

Measurement and Evaluation of Form Accuracy of Large Optical Surfaces (대구경 광학표면의 형상정밀도 측정 및 평가)

  • 김승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.6-7
    • /
    • 2002
  • 대구경 광학계는 일반적으로 직경이 100 밀리미터 이상 1 미터에 이르는 거울이나 렌즈를 총칭한다. 이러한 대구경 광학계의 수요는 과거에는 천문 관측용 광학 부품에 주로 한정되었으나, 근래에 들어 인공위성의 지상 또는 우주 관측의 수요가 늘면서 다양한 형상의 대구경 광학계의 생산이 증대되고 있다. 또한 최근 들어서는 전자 및 디스플레이 산업에서 복잡한 형상 패턴의 노광 방식에 의한 기술의 사용이 증대되면서 노광기의 핵심부품인 대구경 광학계의 소비자 산업의 수요도 점차 확대되어 가고 있다. (중략)

  • PDF

TIR Holographic lithography using Surface Relief Hologram Mask (표면 부조 홀로그램 마스크를 이용한 내부전반사 홀로그래픽 노광기술)

  • Park, Woo-Jae;Lee, Joon-Sub;Song, Seok-Ho;Lee, Sung-Jin;Kim, Tae-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.175-181
    • /
    • 2009
  • Holographic lithography is one of the potential technologies for next generation lithography which can print large areas (6") as well as very fine patterns ($0.35{\mu}m$). Usually, photolithography has been developed with two target purposes. One was for LCD applications which require large areas (over 6") and micro pattern (over $1.5{\mu}m$) exposure. The other was for semiconductor applications which require small areas (1.5") and nano pattern (under $0.2{\mu}m$) exposure. However, holographic lithography can print fine patterns from $0.35{\mu}m$ to $1.5{\mu}m$ keeping the exposure area inside 6". This is one of the great advantages in order to realize high speed fine pattern photolithography. How? It is because holographic lithography is taking holographic optics instead of projection optics. A hologram mask is the key component of holographic optics, which can perform the same function as projection optics. In this paper, Surface-Relief TIR Hologram Mask technology is introduced, and enables more robust hologram masks than those previously reported that were formed in photopolymer recording materials. We describe the important parameters in the fabrication process and their optimization, and we evaluate the patterns printed from the surface-relief TIR hologram masks.

Design of the Low Hunting Controller for the Reticle Stage for Lithography (VCM을 이용한 노광기용 정밀 레티클 스테이지의 저진동 제어시스템 개발)

  • Kim, Mun-Su;Oh, Min-Taek;Kim, Jung-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new design of the precision stage for the reticle in lithography process and a low hunting control method for the stage. The stage has three axes for X, Y, ${\theta}_z$ those actuated by three voice coil motors individually. The designed reticle stage system has three gap sensors and voice coil motors, and supported by four air bearings and the forward/inverse kinematics of the stage were solved to get an accurate reference position. When a stage is in regulating control mode, there always exist small fluctuations(stage hunting) in the stage movement. Because the low stage hunting characteristic is very important in recent lithography and nano-level applications, a special regulating controller for ultra low hunting is proposed in this paper. Also this research proposed the 2-step transmission system for preventing the noise infection from environmental devices. The experimental results showed the proposed regulating control system reduced hunting noise as 35nm(rms) when a conventional PID generates 77nm(rms) in the same mechanical system. Besides the reticle stage has 100nm linear accuracy and $1{\mu}rad$ rotation accuracy at the control frequency of 8kHz.

A Study on Cooling Conditions of a Linear Motor used in an Exposer for the Manufacturing LCD (LCD 제조용 노광기에 사용되는 리니어 모터의 냉각조건에 대한 연구)

  • Yang, Hong Cheon;Lee, Young Nam;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2012
  • The high thrust of the linear motor in the exposer generates the high temperature heat by the friction and the electromagnetic forces on its coil. It can cause the thermal deformation and the accuracy of the equipment is finally decreased which has a bad effect on the productivity. In this research, the heat and flow on the linear motor of the exposer has been analyzed. The existing equipment is non-contact fluid refrigerant type. The numerical analysis data of the existing equipment have been acquired and the reliability of the data has been verified. The revised modeling for the next-generation is suggested for cooling the exposer effectively.

Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System (365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan;Jung, Mee Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.