• Title/Summary/Keyword: 네스티드 배열

Search Result 2, Processing Time 0.016 seconds

Bearing Estimate Error Correction Method for a Nested Array (네스티드 배열의 방위각 추정오차 보정기법)

  • 이장식;이정훈;이수형;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.110-115
    • /
    • 2001
  • In this paper, we propose a beamformer adequate for the nested away that is generally used for multiple frequency band signal processing. The nonisotropic beam pattern of channel in this array causes two problems: the bearing-estimate error of mainlobe and the difference between design and output in sidelobe level. By separating the time delay among channel signals and the time delay among sensor signals in channel, we can remove the effects of the nonisotropic beam pattern of channel in the beamformer output. Through this process, a method to correct simultaneously these problems is proposed.

  • PDF

Analysis of array invariant-based source-range estimation using a horizontal array (수평 배열을 이용한 배열 불변성 기반의 음원 거리 추정 성능 분석)

  • Gu, Hongju;Byun, Gihoon;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • In sonar systems, the passive ranging of a target is an active research area. This paper analyzed the performance of passive ranging based on an array invariant method for different environmental and sonar parameters. The array invariant developed for source range estimation in shallow water. The advantages of this method are that detailed environmental information is not required, and the real-time ranging is possible since the computational burden is very small. Simulation was performed to verify the algorithm. And this method is applied to sea-going experimental data in 2013 near Jinhae port. This study shows the performance of ranging for source orientation, transmission signal length, and length of a receiver through numerical simulation experiments. Also, the results using nested array and uniform line arrays are compared.