• Title/Summary/Keyword: 냉방 및 제습

Search Result 27, Processing Time 0.025 seconds

Dehumidification and Temperature Control for Green Houses using Lithium Bromide Solution and Cooling Coil (리튬브로마이드(LiBr) 용액의 흡습성질과 냉각코일을 이용한 온실 습도 및 온도 제어)

  • Lee, Sang Yeol;Lee, Chung Geon;Euh, Seung Hee;Oh, Kwang Cheol;Oh, Jae Heun;Kim, Dea Hyun
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.337-341
    • /
    • 2014
  • Due to the nature of the ambient air temperature in summer in korea, the growth of crops in greenhouse normally requires cooling and dehumidification. Even though various cooling and dehumidification methods have been presented, there are many obstacles to figure out in practical application such as excessive energy use, cost, and performance. To overcome this problem, the lab scale experiments using lithium bromide(LiBr) solution and cooling coil for dehumidification and cooling in greenhouses were performed. In this study, preliminary experiment of dehumidification and cooling for the greenhouse was done using LiBr solution as the dehumidifying materials, and cooling coil separately and then combined system was tested as well. Hot and humid air was dehumidified from 85% to 70% by passing through a pad soaked with LiBr, and cooled from 308K to 299K through the cooling coil. computational Fluid Dynamics(CFD) analysis and analytical solution were done for the change of air temperature by heat transfer. Simulation results showed that the final air temperature was calculated 299.7K and 299.9K respectively with the deviation of 0.7K comparing the experimental value having good agreement. From this result, LiBr solution with cooling coil system could be applicable in the greenhouse.

Dynamic Simulation of a Hybrid Cooling System utilizing Heat Pump, Desiccant and Evaporative Cooler (열펌프, 데시칸트 및 증발식 냉각기를 조합한 하이브리드 냉방 시스템의 동특성 해석 연구)

  • Seo, Jung-Nam;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hybrid desiccant cooling system(HDCS) consists of desiccant rotor, regenerative evaporative cooler, heat pump and district heating hot water coil. In this study, TRNSYS and EES, dynamic and steady simulation programs were used for studying hybrid desiccant cooling system which is applied to an apartment house from June to August. The results show that power consumption of the hybrid desiccant cooling system is 70 kWh in June, 199 kWh in July and 241 kWh in August. Sensible and latent heats removed by the hybrid desiccant cooling system are 300 kWh, 301 kWh in June, 610 kWh, 858 kWh in July and 719 kWh, 1010 kWh in August. COP of the hybrid desiccant cooling system is 8.6 in June, 7.4 in July and 7.2 in August. COP of the hybrid desiccant cooling system decreases when latent heat load increases. Operation time of the system is 70 hours in June, 190 hours in July and 229 hours in August. Since the cooling load is largest in August, the operation time of August is longest for maintaining the indoor temperature at $26^{\circ}C$. Due to the characteristics of hybrid desiccant cooling system for efficiently handling both sensible and latent loads, this system can handle sensible and latent heat loads efficiently in summer.

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Study on the energy-saving constant temperature and humidity machine operating characteristics (에너지 절감형 항온항습기 운전 특성에 관한 연구)

  • Cha, Insu;Ha, Minho;Jung, Gyeonghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2016
  • The heat recovery system that was applied in this study, is the energy-saving type that can produce the maximum cooling capacity less power in use. In order to have a more precise control function the temperature and humidity of the constant temperature and humidity machine, control algorithm is applied to designed a fuzzy PID controller, and the outside air compensation device (air-cooled) demonstrated excellent ability to dehumidify the moisture, $-20^{\circ}C$ in winter. High efficiency and the low-noise type sirocco fan operate quitely and designed to fit the bottom-up and top-down in accordance with the characteristics of equipment. as a result of experiment data, the conversion efficiency is 95% or more, power recovery time is within 5sec, stop delay time is within 30sec, pump down time is 10sec, pump delay time is 5sec, heating delay time is 5sec, temperature deviation is ${\pm}2^{\circ}C$ (cooling deviation: $2^{\circ}C$, Heating deviation : $2^{\circ}C$), humidity deviation is a ${\pm}5%$ (humidification deviation 3.0%, dehumidification deviation 3.0%). Recently, ubiquitous technology is important. so, the constant temperature and humidity machine designed to be able to remotely control to via the mobile phone, and more scalable to support MMI software and automatic interface. Further, the life of the parts and equipment is extended by the failure.

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF

A Research to Decrease Airborne Microoganism the Train (전동차내 부유 미생물 저감방안에 관한 연구)

  • Choi, Sung-Ho;Choi, Soon-Gi;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2895-2901
    • /
    • 2011
  • SeoulMetro(line number 1 to 4) for the first half of the year. Therefore air quality in the subway is very important. It is passengers, such as sneezing and respiratory vital activities, Suspended due to skin keratin microbial action, and Microbial contaminants such as viruses. Hypersensitivity disorders, an atopic dermatitis, infectious diseases, allergic diseases, and can cause respiratory diseases. Ministry of Environment and National Institute of Environmental Research is managed so the life bacteria. It is emerging as the occupational health problems. Introduction of an appropriate ventilation system for cooling and dehumidification is needed. In line number 2, commuting and normal trains are measured in-room floating microbes. Suspended bacteria and fungi suspended in 2011 for 85 ~ 385$cfu/m^3$, 67 ~ 98$cfu/m^3$ is lower than baseline. Suspended to prevent microbial contamination and air conditioning equipment performance is a substantial improvement. Suspended micro-organisms and the impact on passenger room ventilation is increased. Electric car how to improve air quality substantially investigated.

  • PDF

Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid Solar Air-water Heater (태양열 공기-물 가열기의 공기 가열 성능 평가 및 열적 성능 개선을 위한 실험적 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.47-57
    • /
    • 2017
  • Solar energy is one of the important renewable energy resources. It can be used for air heating, hot water supply, heat source of desiccant cooling system and so on. And many researches for enhancing efficiency have been conducted because of these various uses of solar thermal energy. This study was performed to investigate the air heating performance of hybrid solar air-water heater that can heat air and liquid respectively or simultaneously and finding method for improving thermal performance of this collector. This collector has both liquid pipe and air channel different with the traditional solar water and air heater. Fins were installed in the air channel for enhancing the air heating performance of collector. Also air inlet & outlet temperature, ambient temperature and solar collector's inner part temperature were confirmed with different air velocity on similar solar irradiance. As a result, temperature of heated air was shown about $43^{\circ}C$ to $60^{\circ}C$ on the $30^{\circ}C$ of ambient temperature and thermal efficiency of solar collector was shown 28% to 73% with respect to air velocity. Also, possibility of improvement of thermal performance of this collector could be ascertained from the heat transfer coefficient calculated from this experiment. Thus, it is considered that the research for finding optimal structure of hybrid solar air-water heater for enhancing thermal performance might be needed to conduct as further study based on the method for improving air heating performance confirmed in this study.