• Title/Summary/Keyword: 냉방에너지

Search Result 381, Processing Time 0.024 seconds

A Study on the Perfomance Analysis of Low Energy Cooling Systems in Office building (사무소건물의 에너지절약형 냉방시스템 성능분석에 관한 연구)

  • Park, Chang-Bong;Rhee, Eon-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.89-94
    • /
    • 2010
  • A large portion of the energy cost of a building is cooling and heating to maintain a comfortable indoor environment. Air conditioning is now one of the important parts in the building design, as increase in energy consumption and pollutant emission in energy conversion process. In this study, elements that affects the energy consumption of model building are identified and the perfomance analysis of the alternative a Low Energy Cooling Systems considering characteristics of model building and energy saving performance is analyzed. In this study, elements that affect the energy consumption of office building are identified and energy saving performance of the alternative air conditioning system is analyzed. As a result, applied to earn and suggest basic data for energy saving measures. In this study, EnergyPlus simulation program was used to evaluate the energy load when alternative Low Energy Cooling Systems are applied to the model building. The reliability of simulation program is verified by comparing actual energy load from operation data of building management office and predicted energy load using simulation program. For Low Energy Cooling System application which considers the purpose and characteristics of the building, reasonable and energy-saving air conditioning method obtained by analyzing energy consumption elements for each expected air conditioning methods is used to deduct result of this study.

Comparison of Cooling-Energy Performance Depending on the Economizer-Control Methods in an Office Building (이코노마이저 제어 방법에 따른 사무소 건물의 냉방 에너지 성능 비교)

  • Son, Jeong-Eun;Hyun, In-Tak;Lee, Jea-Ho;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.432-439
    • /
    • 2015
  • Current building procedures seek to minimize external air supplies to reduce the energy consumption of air conditioning, resulting in a high dependency on mechanical ventilation. We therefore studied an economizer-cycle system, whereby the introduction of external air saves energy. We analyzed different economizer-control methods, addressing mixed-air temperatures and outdoor-air fractions according to outdoor-air temperatures; also, we analyzed the energy consumption of the three economizer-cycle control types using detailed EnergyPlus simulation modeling. A differential enthalpy control method showed a lower energy consumption range from 5.8% to 6.2% than that of other methods during the simulated period. A differential dry-bulb control method showed a 12.7% lower energy consumption than the no-economizer method in the intermediate period, but also showed 7.1% more energy consumption during the summer period. When latent heat was not removed due to high summer humidity, we found a significant level of resultant energy consumption.

The Program Coding Technology for the heat Load Prediction in Switching Room (통신시스템실 열부하 예측프로그래밍 기술)

  • Noh, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.5 s.59
    • /
    • pp.111-114
    • /
    • 1999
  • 전화국사 내 교환기의 신설이나 증설 시에 최적의 열부하 산정이 필요하다. 이를 위해 전화국사의 특성에 알맞은 열부하 계산 프로그램을 윈도우용으로 개발하여 비전문가들도 쉽게 사용할 수 있도록 하고자 한다. 프로그램 구성은 기본자료입력부, 전화국사의 자료입력부, 입력된 데이터를 이용하여 국사의 냉방부하와 냉방시스템의 용량을 계산하는 부분 그리고 출력부분으로 크게 4부분으로 나눌 수 있다. 본 프로그램을 이용하여 한국통신 중앙전화국 5ESS실의 냉방기기용량을 산정해 본 결과, 기존 냉방기기 69USRT의 49%에 해당되는 33.5USRT로 나타나 기존 냉방기기의 용량이 너무 과다하게 선정되었음이 판명되었다. 본 프로그램은 전화국사의 에너지 절약에 기여할 수 있을 것으로 판단된다.

The performance evaluation of outdoor unit cooling system in a residential apartment complex (주상복합의 실외기 형태에 따른 냉방시스템 성능 평가)

  • Kyung, Seo-Kyung;Kim, Yun-Jin;Lim, Jung-Hee;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.263-268
    • /
    • 2008
  • In a residential complex case, the efficiency of land use are maximized, but a variation of external condition such as load in-equality, the increase in wind velocity and solar radiation by a height causes increasing energy in a building. Besides, because of increasing window size for a lighting and a view, it comes heating load in winter and cooling load in summer. A choice of cooling-system is important for this reason. Recently an internal high-rise residential complex installs an air-cooling system and operates individual heating. However, this study applies water-cooling used one public cooling-tower instead of an air-cooling system, also with an efficiency test of an air and a water-cooling system, consider an internal applicability.

  • PDF

Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer (충적대수층을 이용한 지열히트펌프시스템의 냉방성능)

  • Kang, Byung-Chan;Park, Jun-Un;Lee, Chol-Woo;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

A Study on the Efficiency Enhancement of the HT-PEMFC Having Fuel Processing System by Connecting Adsorption Chilling System (흡착식 냉방 시스템을 이용한 수소개질/연료전지 시스템의 효율향상)

  • NASEEM, MUJAHID;KIM, CHUL-MIN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.411-417
    • /
    • 2019
  • An adsorption chiller is connected to the fuel processing/fuel cell system to increase the energy efficiency of the system. Since, the minimum temperature of $70^{\circ}C$ is needed to operate the adsorption chiller, HT-PEMFC is used as a heating source and $80^{\circ}C$ hot water in the water tank at the system is supplied to the chiller. Experimentally measured COP of the adsorption chiller was between 0.4-0.5 and the total calcuated efficiency of the connected system was between 60% and 70% comparing to 47% without adsorption chilling system.

The Operating Characteristics of the Compressor-Driven Metal Hydride Heat Pump System (Compressor-Driven Metal Hydride Heat Pump System의 동작특성에 관한 연구)

  • Park, Jeong-Gun;Seo, Chan-Yeol;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.157-167
    • /
    • 2001
  • Metal hydride올 이용하는 냉방시스템은 다른 냉방시스템과 비교하여 환경 친화적이며 Clean technology라는 장점이 있다. 이러한 시스템 중에 최근에 많은 연구가 진행중인 Electric Compressor로 수소의 이동이 제어되는 Compressor-Driven Metal Hydride Heat Pump(CDMHHP)은 폐열원의 온도에 의해 제어되는 시스템에 비하여 cooling power가 크다는 장점과 함께 단속적인 냉방이 아닌 2개의 함금쌍으로도 연속적인 냉방이 가능하다는 장점이 있다. 본 연구에서는 이러한 CDMHHP system의 동작특성을 분석하기 위해서 2개의 반응관에 고용량과 solping 특성이 매우 우수한 $Zr_{0.9}Ti_{0.1}Cr_{0.55}Fe_{1.45}$ Laves phase metal hydride을 장입하여 시스템을 구성하고 cycle time, surrounding temperature, 장입 수소량, 수소이동량등의 동작조건을 최적화 한 결과 최대 cooling power가 251 kcal/kg-alloyh의 우수한 성능을 보였다.

  • PDF

Experimental Study on Energy Saving Performance of Outdoor Temperature Reset Control Strategy for Central Cooling System (중앙 냉방시스템에 대한 외기보상제어의 절약 성능에 관한 실험적 연구)

  • Kim, Dong-Cheol;Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.30-36
    • /
    • 2011
  • In this study, energy saving performance of outdoor temperature reset control strategy for central cooling system is researched by experiments. Outdoor temperature reset control is the control method to change indoor air set temperature according to outdoor air temperature change. The range of indoor air set temperature is represented by the comfort temperature range of indoor air temperature offered from ASHRAE and indoor air set temperature is programmed between $22^{\circ}C$ and $27^{\circ}C$ by outdoor air temperature $20^{\circ}C{\sim}32^{\circ}C$ in summer. As a result of applying outdoor temperature reset control to central cooling system, the suggested control method shows better performances of energy savings than the conventional method which indoor temperature maintains constantly.