• 제목/요약/키워드: 냉매 152a

검색결과 45건 처리시간 0.027초

천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [2]: 다단 캐스케이드 냉동 사이클에 적용 (A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle)

  • 조정호;김유미
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.1013-1019
    • /
    • 2011
  • 본 논문에서는 천연가스를 액화시키기 위해서 프로판, 에틸렌 및 메탄 냉매를 이용한 다단 캐스케이드 냉동사이클에 대한 전산모사를 PRO/II with PROVISION 8.3에 내장되어 있는 Peng-Robinson 상태방정식을 활용하여 수행하였다. 천연가스의 조성은 한국가스공사로부터 제공받은 것을 적용하였으며, 유량은 연간 500만톤으로 가정하였다. 프로판 냉매의 공급온도는 $-40^{\circ}C$로, 에틸렌 냉매의 공급온도는 $-95^{\circ}C$로 메탄 냉매의 공급온도는 $-155^{\circ}C$로 각각 정하였으며, 천연가스와 각각의 냉매의 최소 접근온도는 $3^{\circ}C$로 정하였다. 다단 냉동을 위한 프로판 냉동 사이클은 3단 냉동을 가정하였으며, 에틸렌 냉동 사이클은 2단 냉동을 그리고 메탄 냉동 사이클은 3단 냉동을 가정하였다. 메탄 냉매에 의해서 $-152^{\circ}C$까지 냉각된 천연가스는 줄-톰슨 팽창에 의해서 $-162^{\circ}C$까지 냉각되어 액화가 일어나도록 하였다. 결론적으로 캐스케이드 냉동 사이클과 줄-톰슨 팽창을 통한 천연가스의 액화율은 몰 비로 91.71%이며, 액화천연가스 1.0 kg/hr당 0.433 kW의 압축 일이 필요함을 알 수 있었다.

R435A를 적용한 정수기 냉동시스템의 성능평가 (Performance Evaluation of R435A on Refrigeration System of Water Purifiers)

  • 이요한;강동규;최현주;정동수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.15-23
    • /
    • 2013
  • In this study, thermodynamic performance of R435A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 20%R152a/80%RE170 using actual domestic water purifiers. This mixture is numbered and listed as R435A by ASHRAE recently. Test results show that the system performance with R435A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R435A is 11.8% lower than that of HFC134a. The compressor discharge temperature of R435A $8^{\circ}C$ lower than that of HFC134a at the optimum charge. Overall, R435A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

저온용 R502 대체냉매의 성능 평가 (Performance of R502 Alternative Refrigerants for Low Temperature Applications)

  • 하종철;황지환;백인철;정동수
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.883-890
    • /
    • 2005
  • In this study, 2 pure hydrocarbon refrigerants of R1270 (Propylene) and R290 (Propane) and 3 binary mixtures composed of R1270, R29O and R152a were tested in a refrigerating bench tester with a scroll compressor in an attempt to substitute R502 used in most of the low temperature applications. The test bench provided 3\sim3.5$ kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of -28 and $45^{\circ}C$ in the evaporator and condenser, respectively. Test results showed that all refrigerants tested had $9.6\sim18.7\%$ higher capacity and $17.1\sim27.3\%$ higher COP than R502. The compressor discharge temperature of R1270 was similar to that of R502 while those of all other refrigerants were $23.7\sim27.9\%$ lower than that of R502. For all alternative refrigerants, the amount of charge was reduced up to $60\%$ as compared to R502. Overall, these alternative refrigerants offer better system performance and reliability than R502 and can be used as long term substitutes for R502 due to their excellent environmental properties.

탄화수소계 냉매의 풀비등 열전달 상관식 개발 (Development of Pool Boiling Heat Transfer Correlation for Hydrocarbon Refrigerants)

  • 박기정;백인철;정동수
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.247-253
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of hydrocarbon refrigerants are measured from a horizontal smooth tube of 19.0 mm outside diameter. Tested pure refrigerants are Propylene, Propane, Isobutane, Butane and Dimethylether (DME). The pool temperature was maintained at saturation temperature of $7^{\circ}C$ and heat flux was varied from $10kW/m^2$ to $80kW/m^2$ with an interval of $10kW/m^2$. Wall temperatures were measured directly by thermocouple hole of 0.5 mm out-diameter, 152 mm long and inserting ungrounded sheathed thermocouples from the side of the tube. Tested results show that HTCs of Propane, Propylene are 2.5%, 10.4% higher than those of R22 while those of Butane and Isobutane are 55.2%, 44.3% lower than those of R22 respectively. For pure refrigerants, new correlation can be applied to all of CFCs, HCFCS, HFCs, as well as hydrocarbons was developed. The mean deviation was 4.6%.

대체냉매를 적용한 일반화된 모세관의 유량예측 상관식 (A Generalized Empirical Correlation on the Mass Flow Rate through Adiabatic Capillary Tubes with Alternative Refrigerants)

  • 최종민;장용희;김용찬
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.744-750
    • /
    • 2003
  • The performance of adiabatic capillary tubes are measured to provide the database for a generalized correlation. Test conditions and capillary tube geometries are selected to cover a wide range typically observed in air-conditioning and heat pump applications. Based on extensive experimental data for R22, R290, and R407C measured in this study, a generalized correlation for refrigerant flow rate in adiabatic capillary tubes is developed by implementing dimensionless parameters for tube inlet conditions, capillary tube geometry, and refrigerant properties. The correlation yields good agreement with the present data for R22, R290, and R407C with average and standard deviations of 0.9% and 5.0%, respectively. In addition, approximately 97% of the data for Rl2, R134a, R152a, R410A, and R600a obtained in the open literature are correlated within a relative deviation of $\pm$ 15%.

자동차 공조기용 R12 및 R134a 대체 냉매의 성능평가 (Performance of Alternative Refrigerants for R12 and R134a in Automobile Air-Conditioners)

  • 백인철;박기정;심윤보;정동수
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.403-410
    • /
    • 2007
  • In this study, natural refrigerants and their mixtures that can supplement and replace R12 and R134a in automobile air-conditioners are studied. R134a is currently used as the refrigerant in new motor vehicle air conditioners, replacing the ozone depleting refrigerant R12. Although R134a has no ozone depletion potential, it has a relatively large global warming potential, approximately 1300 times that of $CO_2$ over a 100 year time horizon. For this reason, performance of natural refrigerants and their mixtures containing R152a, RE170 (Dimethylether, DME) and R600a (Isobutane) are measured under 2 different temperature conditions. They were tested in a refrigerating bench tester with an open type compressor. The test bench provided about 4 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. Test results show that the coefficient of performance (COP) of these refrigerants is up to 21.55% higher than that of R12 in all temperature conditions. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for automobile air-conditioners.

대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구 (A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures)

  • 박영무
    • 설비공학논문집
    • /
    • 제4권2호
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

증발기와 응축기 온도변화에 따른 R22 대체냉매의 성능평가 (Performance Evaluation of R22 Alternative Refrigerants According to Temperature Variations of Evaporator and Condenser)

  • 백인철;심윤보;정동수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.58-63
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 3 mixtures was measured in an attempt to substitute R22 under 3 different temperature conditions. The mixtures were composed of R1270(propylene), R290(propane) and R152a. They were tested in a refrigerating bench tester with a hermetic rotary compressor The test bench provided about 3.5 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of $7^{\circ}C/45^{\circ}C$ and $-7^{\circ}C/41^{\circ}C$ and $-21^{\circ}C/28^{\circ}C$ in the evaporator and condenser, respectively. Test results show that the coefficient of performance (COP) of these refrigerants is up to 11.54% higher than that of R22 in all temperature conditions. Compressor discharge temperatures were reduced by $14{\sim}31^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 58% as compared to R22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for residential air-conditioning and heat pumping application.

  • PDF

HFC-152a와 HFC-1523에 $CF_3 I$를 혼합한 공비혼합냉매 특성에 관한 연구 (A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3 I$)

  • 이종인;하옥남;김재열;이연신;권일욱
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.102-108
    • /
    • 2001
  • To prevent green house effect and destruction of an ozone layer, an ozone destruction potential(OBP) must be zero and a refrigerant for low global warming potential(GWP) is needed. HFC-l34a, in which hydrogen is mixed instead of chlorine is a refrigerant used for automobile conditioners and its destruction potential is ecologically zero. However, it is not consid- ered as a perfect substitutive refrigerant as its GWP is high. It is studied refrigerant mixtures in which HFC-l52a and $CF_3 I$ in HFC-l52a with low GWP and zero ODP are mixed by experimentally and concluded as follows: 1) With the variation of speed of compressor outside temperature and flow rate, 7he heat of evaporator and compressor and coefficient of perfor- mance was varied, and influenced the air conditioner. 2) The pressure of evaporator was decreased with increasing the speed of compressor and the pressure of evaporator with the refrigerant HFC-l52a was higher 24% than that of azotrope refrigerant mixed with $CF_3 I$

  • PDF

자동차 냉각기 고무호스용 재질에 대한 신뢰성 평가 및 고장메커니즘규명 (Reliability Analysis and Feilure Mechanisms of Coolant Rubber Hose Materials for Automotive Radiator)

  • 곽승범;최낙삼;강봉성;신세문
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.152-162
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under the thermal and mechanical loadings. In this study, test analysis was carried out for evaluating the degradation and failure mechanisms of coolant hose materials. Two kinds of EPDM rubber materials applicable to the hoses were adopted: commonly-used ethylene-propylene diene monomer(EPDM) rubbers and EPDM rubbers with high resistance against electro-chemical degradation (ECD). An increase of surface hardness and a large reduction of failure strain were shown due to the formation of oxidation layer for the specimens which had been kept in a high temperature air chamber. Coolant ageing effects took place only by an amount of pure thermal degradation. The specimens degraded by ECD test showed a swelling behavior and a considerable increase in weight on account of the penetration of coolant liquid into the skin and interior of the rubber specimens. The ECD induced material softening as well as drastic reduction in strength and failure strain. However EPDM rubbers designed for high resistance against ECD revealed a large improvement in reduction of failure strain and weight. This study finally established a procedure for reliability analysis and evaluation of the degradation and failure mechanisms of EPDM rubbers used in coolant hoses for automobile radiators.