• Title/Summary/Keyword: 냉매 152a

Search Result 45, Processing Time 0.025 seconds

Computer Simulation Study for Analyzing Alternative Refrigerants in Residential Air-conditioners (가정용 냉방기의 대체 냉매 성능 분석을 위한 전산 해석 연구)

  • Yoo, Hwaan-Kyu;Jung, Dong-Soo
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.75-90
    • /
    • 1995
  • This paper is concerned about alternative refrigerants for HCFC22 used in room air conditioners and heat pumps. Computer simulation of residential air conditioners using refrigerant mixtures is carried out. Following refrigerants are selected as the pure refrigerants constituting the mixtures studied: R32, R124, R125, R134, R134a, R143a and R152a. Simulation results are presented fur the following mixtures: R32/R134a, R32/R152a, R32/R134, R32/R124, R143a/R134a, R143a/R152a, R143a/R124, R125/R134a, R125/R152a, R125/R124, R32/R152a/R134a, R32/R152a/R134, R32/R152a/R124. The best fluid is found to be the ternary mixture of R32/R152a/R124. For that mixture, the coefficient of performance(COP) and volumetric capacity for refrigeration(VCR) are 13.7% larger and 23% smaller than the respective values for HCFC22. R32/R124 mixture is the best binary fluid pair whose COP and VCR are 13.4% larger and 9.6% smaller than those for HCFC22.

  • PDF

Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures (혼합냉매의 열역학적 물성치 추산에 관한 연구)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1337-1348
    • /
    • 1990
  • Estimations of the thermodynamic properties are made for the selected binary non-azeotropic refrigerant mixtures including R13B1/R114, R22/R114, R12/R114, R152a/R114, R13B1/R152a and R13B1/R12 using the Peng-Robinson equation of state and mixing rules. In this study, we find that the binary interaction coefficients for the above mixtures have an effect upon the vapor-liquid equilibria and the thermodynamic properties. As the binary interaction coefficient becomes larger, the deviation from the idealized model, say, Raoult`s rule, is obvious. A correlation is proposed to relate the binary interaction coefficient to the difference between the dipole moments op each pure refrigerant. Vapor-liquid equilibrium are also accurately estimated using the binary interaction coefficient. Pressure-enthalpy and temperature-entropy relations are plotted for a certain composition ratio of each refrigerant mixture. Results show that the estimating method in this study can be applied to the investigation of the thermodynamic properties for the binary non-azeotropic refrigerant mixtures.

Comparative Study of Condensation Heat Transfer Coefficients between R404A and R152a Flow in a Horizontal Smooth Tube (수평 평활관내 R404A와 R152a 냉매 유동의 응축 열전달 계수에 대한 비교 연구)

  • Lee, Sang-Yong;Kim, Man-Hoe;Lee, Chi-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.256-261
    • /
    • 2005
  • In the present experimental study, condensation heat transfer coefficients between R404A and R152a flow in a horizontal smooth tube were compared. The outer and inner diameters of the tube were 9.52 mm and 7.55 mm, respectively, and the heated length was 1045 mm. The mass flux ranged from 150 to 400 $kg/m^{2}s$ and the test section were uniformly heated from 8 to 12. $kW/m^2$. The quality range was from 0.2 to 0.8 at the saturation temperature from 27.3 to $34^{\circ}C$. Experimental condensation heat transfer coefficients increased as the quality and mass flux increased. Modified Dobson and Chato correlation reduced the mean deviation of 5.1% for R404A and 9.4% for R152a than the original correlation$^{(2)}$.

  • PDF

Study of Performance Optimization as an Alternative Refrigerant HFC152a in a Mobile Air Conditioning System (HFC152a 대체냉매를 이용한 자동차 냉방장치의 성능 최적화에 관한 연구)

  • Lee, Daewoong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.321-327
    • /
    • 2015
  • This study presents an HFC152a refrigerant air conditioner as an alternative to HFC134a, which is currently used in mobile air conditioning systems. Cool-down performance tests of an HFC152a air conditioning system were conducted and compared to a baseline HFC134a air conditioner. The experimental set-up consisted of a belt-driven compressor, a sub-cooled type condenser, an evaporator, and a block-type thermal expansion valve (TXV). A drop-in test was carried out on the mobile air conditioning system under various vehicle running speeds in a climate-controlled wind tunnel (CWT). Additionally, to optimize the HFC152a air conditioning system, the effects of the TXVs on the performance were studied. The results show that compared to the HFC134a air conditioning system, the refrigerant charge quantity was reduced by approximately 20%, the discharge pressure was reduced by about 350~430 kPa, and the air discharge temperature at vehicle running conditions was $0.5{\sim}1.5^{\circ}C$ lower. In addition, good compressor durability was expected due to the lower compression ratio.

Performance of HFC32/HFC152a Mixture for Water-source Heat Pumps (수열원 히트펌프 용 HFC32/HFC152a 혼합냉매의 성능평가)

  • Kang, Dong-Gyu;Kim, Wook-Jin;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.391-400
    • /
    • 2012
  • In this study, performance of HFC32/HFC152a mixture is measured in the composition range of 20 to 50% R32 with an interval of 10% for the comparison with the conventional HCFC22 in water-source heat pumps. Tests are carried out under the same capacity in a heat pump bench tester equipped with a variable speed compressor at the evaporation and condensation temperatures of 7/$45^{\circ}C$ and -7/$41^{\circ}C$ for summer and winter conditions, respectively. Test results show that the compressor power of the HFC32/HFC152a mixture is 13.7% lower than that of HCFC22 while the coefficient of performance(COP) the HFC32/HFC152a mixture is 15.8% higher than that of HCFC22. Hence, from the view point of energy efficiency, the HFC32/HFC152a mixture is excellent as compared to HCFC22. Compressor discharge temperatures of HFC32/HFC152a mixture are increased up to $15.4^{\circ}C$ as compared to that of HCFC22. The amount of charge for HFC32/HFC152 mixture decrease up to 27% as compared to that of HCFC22. Overall, HFC32/ HFC152a mixture is an excellent long term candidate to replace HCFC22 in water-source heat pumps.

Performance Comparison of Automotive Air conditioning System by using R134a and R152a (R134a와 R152a 냉매를 이용한 자동차용 에어컨 시스템의 성능 비교)

  • Kim, Jeong-Su;Nam, Su-Byung;Lee, Dae-Woong;Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • This study presented the feasibility of R152a refrigerant as an alternative of R134a which is used in the current automobile air conditioning system. The performance of air conditioning system installed in the actual vehicle was tested using the climate wind tunnel. The experiments were conducted at various refrigerant charge quantities and various driving conditions such as city traffic, highway traffic and parking. Same components and lubricant were used for both R134a and R152a system. The effects of air set values of thermal expansion valve on the performance were also investigated. In case of the R152a system, refrigerant charge quantity can be reduced about 20%, better performance and superior compressor durability is expected due to the lower discharge pressure compared to the R134a system.

  • PDF

Performance of HFC152a, HFC134a and HC290 Mixtures as Alternative Refrigerants for HFC134a (HFC152a, HFC134a, 프로판을 포함한 자동차용 대체/보충 냉매의 성능)

  • Kang, Nam-Koo;Bae, Guen-Hwan;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.383-391
    • /
    • 2010
  • In this study, HFC152a, HFC134a/HFC152a and HC290/HFC134a/HFC152a mixtures are studied for the supplementary and alternative refrigerants for HFC134a used in automobile air-conditioners. Due to the high global warming potential of HFC134a, it has to be phased out in the long run. Thermodynamic performance of these refrigerants are measured in a bench tester of 3.5 kW capacity with an open type compressor under both summer and winter conditions. Test results show that the coefficient of performance (COP) and capacity of pure HFC152a and HFC134a/HFC152a mixture are 9.1~12% and 7% higher than those of HFC134a. As for the HC290/HFC134a/HFC152a, the COP is up to 9.5% higher than that of HFC134a with 1~2% of HC290 while that is up to 6.1% lower than that of HFC134a with 5% HC290. The capacity of the ternary mixture, however, is 8.6% higher than that of HFC134a at all compositions tested. The compressor discharge temperatures of all refrigerants tested are $6{\sim}10^{\circ}C$ higher than that of HFC134a. For all refrigerants, the amount of charge is reduced up to 32% due to the decrease in liquid density. Overall, these refrigerants provide good performance with reasonable energy savings with less environmental problem and thus can be used as long term alternatives for automobile air-conditioners.

Thermodynamic Properties of Alternatives for R12, R22 and Performances of Refrigerator (R12 및 R22대체냉매의 열역학적 물성치 및 냉동기의 성능비교)

  • Chang, S.D.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • Thermodynamic properties of alternatives for R12 and R22 were estimated and performances of refrigerating cycle using these refrigerants were compared. In this study, we adopt R134a, R22/R142b, R22/R152a, R22/R152a/R124 as alternatives for R12 and R32/R134a for R22. Thermodynamic properties of these refrigerants were estimated using modified CSD equation of state. Cycle simulations of the refrigerating system considering heat source were carried out in order to compare the performance of the system. R134a shows relatively lower COP than R12 but very similar VCR. R22/R142b(50/50 mass fraction), R22/R152a(10/90), R22/R152a/R124(30/25/45) are good for the substitutes of R12 and R32/R134a(30/70) is appropriate for that of R22 in view of COP and VCR.

  • PDF

Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface (평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수)

  • Kang, Dong-Gyu;Lee, Yohan;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.

A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3$I in Air Conditioners (에어컨용 냉매 HFC-152a와 HFC-152a에 $CF_3$I를 혼합한 공비혼합냉매 특성에 관한 연구)

  • 이종인;하옥남;홍경한;권일욱;박찬수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.332-340
    • /
    • 2002
  • In these days, environmental concerns have been increased throughout the industry and community worldwide. To prevent the ozone depletion, ozone depletion potential of a refrigerant must be zero. Simultaneously, a refrigerant with low GWP (global warming potential) is very demanding to induce green house effect. Chlorine-free HFC-l34a is a refrigerant widely used for automotive air-conditioning system because its destruction potential is ecologically zero. Although HFC-l34a has no ozone depletion potential, its global warming potential is so high that it is not considered as a perfect alternative refrigerant that is acceptable for long-term use. In this paper, experimental measurement has been carried out to analyze the performance characteristics of automotive air-conditioning system using HFC-152a, which has low GWP and zero ODP. Also mixed refrigerant that is composed of HFC-152a and $CF_3$ was applied to investigate an alternative possibility for the automotive airconditioning system. As a result of this study, we could draw following conclusions; With respect to the variation of the rotational speed of compressor, outside air temperature and flow rate, the heat amount of evaporator and compressor and performance coefficient was varied.