• Title/Summary/Keyword: 냉간 시동 배출량

Search Result 3, Processing Time 0.015 seconds

Development of O/D Based Mobile Emission Estimation Model (기종점 기반의 도로이동오염원 배출량 추정모형)

  • Lee, Kyu Jin;Choi, Keechoo;Ryu, Sikyun;Baek, Seung Kirl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.103-110
    • /
    • 2012
  • This study presents O/D based emission estimation model and methodology under cold- and hot-start conditions. Contrasting with existing link-based model, new model is able to estimate cold-start emissions with actual traffic characteristics. The results of the case study with new model show similar amount of emission with existing model under hot-start conditions, but five times much more than existing model under cold-start conditions. The annual social benefit estimated by this model is 56.2 hundred million won, which is 48% higher than the result from existing model. It means current green transportation policies are undervalued in terms of air quality improvement. Therefore, New model is expected to improve the objectivity of air quality evaluation results regarding green transportation policies and be applied in various transportation-environment policies.

Early Fuel Evaporator Effects on Cold Driveability of Automobile (조기연료 기화장치의 냉간 시동 및 주행 성능 분석)

  • 전흥신
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.178-185
    • /
    • 2002
  • The object of this paper is to investigate the effects of early fuel evaporators on cold driveability of gasoline passenger cars. Experiment has been carried out for the assessment cold start performance and cold driveability. And fuel consumption rate, emission and cylinder pressure were measured. On the base of combustion pressure of cylinder, rate of heat release, cumulative heat release amount and burned mass fraction are evaluated. The results show that fuel consumption rate is increased by 17.7%, monoxide and hydrocarbon were reduced by 23% and by 45% respectively, fluctuations of indicated mean effective pressure and maximum combustion pressure were increased by 4∼6%, fuel consumption rate per power was improved by 0.2∼2.3%. These are caused by the fact maximum heat release period and main combustion period are getting short.

Experimental Study of the Effect of Secondary Air Injection on the Cold Start Total Hydrocarbon Emissions in a Spark Ignition Engine (스파크 점화기관에서 이차 공기 분사가 냉시동시 THC 배출량에 미치는 영향에 관한 실험적 연구)

  • 이승재;함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Engine emission regulations are becoming more stringent nowadays. In cold transient regime, about 80% THC is exhausted to the atmosphere in the first 200s (US FTP cycles). Accordingly, reducing emission levels in the cold period immediately after the engine start before the catalysts reach their working temperature will be an especially critical factor in meeting more stringent regulations in the future. In this study, the total hydrocarbon quantities are measured using a Fast FID with gasoline fuel for a 4-cylinde. Sl engine, including Secondary Air Injection (SAI) system. Commercial SAI device's direction is reverse to the exhaust flow. In this study, a swirl flow type SAI system which is positioned between the exhaust manifold and exhaust port, was developed. We compared the swirl type secondary air injection with a commercial secondary air injection of .everse flow. The swirl type SAI showed better results in reducing HC by 26% than the commercial flow type SAI of reverse flow which was caused by the better mixing between the exhaust gas and the secondary air.