• 제목/요약/키워드: 냉각 회로

Search Result 279, Processing Time 0.024 seconds

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.96-10 s.155
    • /
    • pp.22-60
    • /
    • 1996
  • PDF

Etude d'un Systéme Pasteurisation de Lait à Energie Solaire(I) -Composition de circuits d'une Maquette- (태양열(太陽熱)을 이용(利用)한 우유(牛乳) 저온처리기(低温處理機) 개발(開発)에 관(関)한 연구(硏究)(I) -모형(模型)의 회로구성(回路構成)-)

  • Song, Hyun Kap;Duchamp, R.
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.97-113
    • /
    • 1984
  • 날씨가 더운지방에 소규모(小規模) 목장(牧場)들이 먼거리를 두고 산재(散在)되어 있는 경우, 각목장(各牧場)에서 생산(生産)된 우유(牛乳)를 수집(收集)해서 처리공장(處理工場)까지 수송하는 데는 많은 어려움이 있다. 현대화(現代化)된 우유처리공장(牛乳處理工場)이나 저온저장시설이 충분(充分)하지 못한 아열대지방(亞熱帶地方)에 위치(位置)한 발전도상국에서는 우유(牛乳)를 장시간(長時間) 수집(收集)하여 먼거리를 수송하는 동안 많은 양(量)의 우유(牛乳)가 부패 손실(損失)되고 있다. 이 문제를 해결(解決)하기 위하여, 그곳 현지목장(現地牧場)에 강하게 쪼이는 태양열(太陽熱)을 이용(利用)하는 것은 대단히 바람직 하다. 에너지 절약이나, 우유(牛乳)의 부패손실(腐敗損失) 막기 위하여, 태양열(太陽熱)을 이용(利用)한 소규모우유처리기(小規模牛乳處理機)를 개발하여 현지목장(現地牧場)에서 직접(直接) 우유를 처리(處理)하여 인근주민에게 공급하는 것이 가장좋은 해결방법이라 판단하고, 그 실현가능성을 확인(確認)하기 위하여 실제로 태양열(太陽熱)우유처리기(處理機) 개발(開發)을 위한 그 모형(模型)의 회로구성(回路構成)을 고찰(考察)한 결과(結果) 다음과 같다. 1. 태양열(太陽熱) 우유처리기(牛乳處理機)의 모형(模型)은 다음 4개(個)의 회로(回路)로 구성(構成)되었다. 가. 우유(牛乳)순환 회로(回路) 나. 가열회로(加熱回路) 다. 예냉회로(豫冷回路) 라. 냉각회로(冷却回路) 2. 우유가열회로(牛乳加熱回路)는 태양열(太陽熱)을 이용(利用)하였으며 냉각회로(冷却回路)는 압축식 냉각기(冷却機)를 이용(利用)하였다. 3. 자동제어(自動制御)시스템을 장치(裝置)하여 태양강도변화(太陽强度變化)에 따른 우유처리량(牛乳處理量) 조절(調節)을 자동화(自動化)할 수 있도록 하였다.

  • PDF

Reduction of Design Variables for Automated Optimization of Injection Mold Cooling Circuit (사출금형 냉각회로 자동최적화를 위한 설계변수 감소 방안)

  • Rhee, B.O.;Choi, J.H.;Tae, J.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.417-422
    • /
    • 2009
  • The injection mold cooling circuit optimization was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channel. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 large automotive parts. Therefore, the number of design variables for the cooling circuit optimization can be reduced in half, resulting in much faster running time for the optimization as a design tool.

  • PDF

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques (신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.

Influence affected on the curvature radius of jar by circuit of cooling temperature and temperature control (냉온회로 및 제어가 JAR곡율반경에 미치는 영향)

  • Shin, Nam-Ho;Choi, Seok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1313-1318
    • /
    • 2007
  • When the mold is cooled suddenly to reduce the time for forming work and improve the quality of jar50ml which is different highly at rib thickness by a series of various curvature radii, the poor quality of void, flow and deformation happens. The structure of spiral cooling circuit at cavity and core can control the temperature of inner and outer side sufficiently. And the system can control cooling and heating automatically. These things are applied to Jar mold. and so, the best quality and the effect of productivity improvement can be obtained.

  • PDF

Optimal Ccontrol Strategy of Cooling System for Polymer Electrolyte Membrane Fuel Cell using Hardware-In-the-Loop Simulation (Hardware-In-the-Loop Simulation을 이용한 고분자 전해질 연료전지 냉각시스템 최적 제어기법 연구)

  • Choi, Eunyeong;Ji, Hyunjin
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.113-121
    • /
    • 2016
  • Polymer electrolyte membrane fuel cell(PEMFC) requires cooling system to maintain the proper operating temperature(about $65^{\circ}C{\sim}75^{\circ}C$) because the efficiency and power are affected by operating temperature. In order to retain the operating temperature of PEMFC, cooling system and coolant control logic are needed. Hardware-in-the-loop simulation(HILS) is one of effective methods to study and evaluate control algorithm. In this paper, the HILS system was designed to study the coolant control algorithm. The models of HILS system consisted of PEMFC, heat exchanger, and external environment associated with temperature. The hardwares in HILS system are 3-way valves, pumps, and a heat exchanger. The priority control and the control target temperature were investigated to improve the control performance using HILS. The 3-way valve in $1^{st}$ cooling circuit was selected as priority control target. The under limit value of $2^{nd}$ 3-way valve set as a function of PEMFC power and $2^{nd}$ circuit coolant temperature to correct temperature control performance. As a result, the temperature of PEMFC is stably controlled.

Collimation of cesium atomic beam using laser light pressure (레이저 광압을 이용한 세슘 원자빔의 집속)

  • 박상언
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.227-231
    • /
    • 2000
  • Thermal cesium atomic beam was collimated by transversely cooling of atoms, for which circularly polarized ($\sigma^+$ and $\sigma^-$ polarized) laser light was illuminated to the atomic beam from two perpendicular directions. As a result, the temperature corresponding to the transverse velocity component could be decreased from 430 mK to 60 11K. In addition, the spatial atomic distribution was observed according to the power difference of the two laser beams and the magnetic field applied, and the result was qualitatively coincided with the calculation result by the Doppler cooling theory. heory.

  • PDF