• Title/Summary/Keyword: 냉각 최적화

Search Result 161, Processing Time 0.022 seconds

Effect of Mn Oxides on the Magnetic properties of Mn-Zn Ferrite (가수가 다른 Mn 산화물이 Mn-Zn 페라이트의 자기특성에 미처는 영향)

  • 박천제;권오홍;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.516-519
    • /
    • 1999
  • 스위칭 전원에 사용되는 Mn-Zn 페라이트에 대항하는 고성능화의 요구에 부응하기 위해 그 중요한 요인이 되는 기수가 다른 Mn 산화물에 착목하여 그것들을 이용 제작한 Mn-Zn 페라이트의 자기특성 및 결정구조를 정밀하게 조사함과 동시에 그것들의 상관성을 검토하였다. Mn-Zn 페라이트의 소성 분위기의 변경방식은 소성개시에서 종료시까지 질소 분위기, 냉각시부터 질소분위기로 변경, 소성 개시에서 종료시까지 대기중 소성 세가지를 실험하였고, 소성 온도는 115$0^{\circ}C$, 120$0^{\circ}C$, 125$0^{\circ}C$ 130$0^{\circ}C$ 135$0^{\circ}C$ 및 140$0^{\circ}C$의 6종류의 시료를 제작하였다. 이 결과는 Mn-Zn 페라이트의 소성 분위기 및 온도 최적화는 승온 및 온도 유지 단계에서는 대기중으로, 냉각단계에서는 질소가스 분위기로 치환한 것과 소성 온도는 120$0^{\circ}C$ 이다. 이 분위기에서 Mn-Zn 페라이트를 가수를 다르게 하여 시료의 투자율 및 주파수 특성, 코아로스 주파수 의존성, 코아로스 주파수로 나눈값의 주파수 의존성, 스피넬 구조(311)의 면에서의 회절픽, 자화의 온도 의존성을 분석하였다. 이 결과는 Mn$_3$O$_4$를 출발원료로 사용한 Mn-Zn 페라이트가 투자율 및 한계 주파수 모두 뛰어난 특성을 나타내었다.

  • PDF

Exergy Analysis and Optimization of Chiller System in Hydrogen Fueling Station Using R290 Refrigerant (R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화)

  • HYEON, SOOBIN;CHOI, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.356-364
    • /
    • 2021
  • During the hydrogen fueling process, hydrogen temperature inside the compressed tank were limited below 85℃ due to the allowable pressure of tank material. The chiller system to cool compressed hydrogen used R407C, greenhouse gas with a high global warming potential (GWP), as a refrigerant. To reduce greehouse gas emission, it should be replaced by refrigerant with a low GWP. This study proposes a chiller system for fueling hydrogen with R290, consisted in propane, by applying the C3 pre-cooled system use d in the LNG liquefaction process. The proposed system consisted of hydrogen compression and cooling sections and optimized the operating pressure through exergy analysis. It was also compared to the exergy efficiency with the existing system at the optimal operating pressure. The result showed that the optimal operating pressure is 700 kPa in 2-stage, 840 kPa/490 kPa in 3-stage, and the exergy efficiency increased by 17%.

1.31 um Uncooled DFB-LD with High Slope Efficiency for G-PON Application (G-PON용 높은 전광변환효율을 갖는 1.31 um 비냉각 DFB-LD)

  • Kim, Jeong-Ho;Pi, Joong-Ho;Kim, Deok-Hyun;Park, Chil-Sung;Ryu, Han-Gwon;Koo, Bon-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.333-336
    • /
    • 2007
  • A Strained Layer Multiquantum-Well (SL-MQW) distributed feedback laser at a wavelength of 1.31 um operating from $-40^{\circ}C$ to $85^{\circ}C$ without any cooling is grown by metal-organic chemical vapor deposition (MOCVD). Lasers with high slope efficiency are achieved through careful optimization of a SL-MQW active layer, especiallyoptimizing the amount of strain, the well thickness, the barrier thickness, the number of wells, and the active layer width. In this paper, we obtain the slope efficiencies of 0.38[mW/mA] and 0.26 [mW/mA] at $25^{\circ}C$ and $85^{\circ}C$, respectively. Threshold currents are 7.1[mA] and 19.8[mA] at $25^{\circ}C$ and $85^{\circ}C$, respectively.

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique (CFD를 이용한 연료전지 차량 레이아웃 최적화)

  • Kim, Jung-Ill;Jeon, Wan-Ho;Cho, Jang-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

Study on the Design Optimization to Improve Injection Molding Performance of Plastic Regulator Rail (플라스틱 레귤레이터 레일 성형 최적화연구)

  • Lee, Haeng-Soo;Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5709-5715
    • /
    • 2012
  • Injection molding product is commonly used for reducing the weight of automotive vehicle, and door regulator guide rail with plastic material is also made by injection molding process. In order to improve the injection molding performance of plastic regulator guide rail, optimal molding condition is suggested by numerical simulation and DOE after obtaining the sensitivity of parameters for regulator rail manufacturing on warpage and fill time. Furthermore, multi direct gate method and optimal cooling circuit are introduced to get the uniform temperature distribution and better cooling efficiency in molding product. The effect of the proposed design on the injection molding performance is verified by the test of prototype of plastic regulator guide rail.

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

A Study on the Optimum of Closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(I) (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 I)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.490-499
    • /
    • 1989
  • These days the closed cycle gas turbine attracts considerable attention due to : (1) The possibility of directly coupling the closed cycle gas turbine with a high temperature gas cooled reactor ; (2) the economical use of dry coolers to reduce the thermal charge of the environment ; and (3) the reduction of pollution and energy consumption, by replacing the domestic hearth by a central heating and power station. In this paper, we selected the optimal cycle from the characteristic of thermodynamic cycle for the optimal design of closed CO$_{2}$ gas turbine cycle usuable in nuclear energy power plant. Also the effects of between the parameters and thermal efficiency were investigated by computer simulation. These results and design data will be added to basics in optimal designing closed CO$_{2}$ cycle gas turbine plant.

Stability Rating Tests for Optimization of Axial Baffle Length (배플 길이의 최적화를 위한 연소 안정성 평가 시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

고속 스퍼터링 소스를 이용한 구리 후막 제조 및 특성

  • Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.345.1-345.1
    • /
    • 2016
  • 구리 피막은 열 및 전기를 잘 전달하는 특성으로 인해 전기 배선이나 Heat Sink 재료 등에 이용되고 있다. 최근에는 전자파 차폐나 FCCL (Flexible Copper Clad Laminate) 등의 피막으로 널리 이용되면서 연속 코팅 및 후막 제조를 위한 고속 소스의 필요성이 증가하고 있다. 연속코팅 설비에 적용하거나 후막을 경제적으로 제조하기 위해서는 정지상태의 기판을 기준으로 시간당 $100{\mu}m$ 이상의 증착 속도가 요구된다. 기존 마그네트론 스퍼터링 소스의 경우 일반적으로 증착율이 시간당 $20{\mu}m$ 이내이며, 고전력을 이용하는 소스의 경우도 $60{\mu}m$를 넘지 못하고 있다. 본 발표에서는 자기장 시뮬레이션을 통해 자석의 배열을 최적화하고 냉각 효율을 고려한 소스 설계를 통해 고속 스퍼터링 소스를 제작하고 그 특성을 평가하였다. 제작된 소스는 구리 코팅을 위한 스퍼터링 공정 조건을 도출하고 다양한 기판에 $20{\mu}m$ 이상의 구리 후막을 코팅하여 미소 형상 및 코팅 조직을 분석하였다.

  • PDF