• Title/Summary/Keyword: 냉각튜브

Search Result 68, Processing Time 0.021 seconds

원형실린더의 벽면효과에 관한 연구

  • Bae, Bong-Gap;O, U-Jun;Choe, Min-Seon;Jo, Dae-Hwan;Lee, -GyeongU
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.134-135
    • /
    • 2009
  • 선박에서 주로 채택되는 열교환기는 쉘튜브형과 판형열교환기로 분류된다. 이 연구에서는 소형쉘튜브형 열교환기의 설계에서 중요한 요소인 냉각튜브와 벽면과의 간격에 따른 유동특성을 입자영상유속계를 이용하여 계측하였다. 연구 결과 벽면과의 거리변화에 따른 임계간격비는 0.25전후로 추정되었으며 벽면효과에 따른 정량적 데이터를 확보하였다.

  • PDF

Experimental Investigation on Forced Convective Heat Transfer Characteristic Generated to Heated Tube (가열된 튜브에서 발생하는 강제 대류열전달 특성에 관한 실험적 연구)

  • Park, Hee-Ho;Lee, Yang-Suk;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-98
    • /
    • 2006
  • The Heated Tube Facility(HIF) was fabricated to identify the forced convective heat transfer and the cooling characteristic for the hydrocarbon fuel(Jet A-1), which is used for the coolant of the regenerative cooling system. The forced convective heat transfer coefficient was calculated from the measured coolant and tube surface temperature. In case of using the Jet A-1, the maximum heat flux which the coolant can absorb was identified by determining the critical wall temperature generating the burnout on the fixed flow condition. The inlet bulk-temperature of the coolant has a direct influence on the forced convective heat transfer characteristic.

Enhanced Cooling Performance of Polymer Actuators Using Carbon Nanotube Composites (탄소나노튜브 복합재를 이용한 고분자 액추에이터의 냉각 개선)

  • Piao, Chengxu;Suk, Ji Won
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.165-168
    • /
    • 2017
  • Coiled polymer actuators fabricated by twisting polymer fishing lines or sewing threads respond to heating and cooling with their contraction and relaxation. However, their actuation speed is highly dependent on the heating and cooling rates. In order to improve the actuation speed, the coiled polymer actuator was coated with polydimethylsiloxane composites. The introduction of multi-walled carbon nanotubes into the polydimethylsiloxane improved the actuation speed by about 13%.

A Study on Cooling of Piezoelectric Element of Multifunction Equipment for Vacuum Exhaust and Ultrasonic Joining (진공 배기 및 초음파 접합 복합기 진동자 냉각에 관한 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1511-1517
    • /
    • 2012
  • Vacuum chamber or vacuum tube for the exhaust process of vacuum glazing is presently used, where excessive time and expenses are required to make the whole vacuum chamber or tube vacuum. To solve this problem, multifunction equipment for vacuum exhaust and ultrasonic joining at atmospheric pressure has been developed, in which a piezoelectric vibrator experiences excessive temperature rise resulting in optimizing the cooling of the equipment. Therefore, in this study, cooling effects of natural convection and forced convection methods were identified by numerical analysis and experiments, and cooling performance of the multifunction equipment was optimized.

Thermal Characteristics of Miniature Heat Pipes Using MWNT(Multi Walled Carbon Nanotube) Nanofluids (다중벽 탄소나노튜브 나노유체를 사용한 소형 히트파이프의 열특성)

  • Ha, Hyo-Jun;Hwang, Kyo-Sik;Jang, Seok-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.632-635
    • /
    • 2010
  • 본 논문에서는 다중벽 탄소 나노튜브를 작동유체로 사용하는 전자장치 냉각용 소형 히트파이프의 열적성능을 실험적으로 확인 하였다. 실험의 결과들을 바탕으로 다중벽 탄소 나노튜브 나노유체를 작동유체로 사용하는 히트파이프의 열저항은 동일한 충진량을 가지는 물을 작동유체로 사용한 히트파이프와 비교하여 나노유체의 부피비가 0.5%일때, 최대 18.6% 감소한다. 다중벽 탄소 나노튜브 나노유체의 열저항은 동일한 입열량에서 나노유체의 부피비가 증가 할수록 감소하는 것을 알 수 있다. 이를 통하여 다중벽 탄소 나노튜브 나노유체 히트파이프의 열저항은 나노유체의 부피비에 변화에 따라서 변한다는 것을 확인 할 수 있으며, 추가적으로 증발부에서 유체의 기화로 인한 나노입자의 증착에 의하여 열전달 표면적의 증가 또한 열저항의 감소 원인으로 예측가능 하다.

  • PDF

Study on Performance Characteristics of Spiral Fin-Tube Evaporator Applied to Domestic Refrigerator-Freezers (나선형 핀-튜브 증발기를 적용한 냉장고의 성능 특성에 관한 연구)

  • Lee, Sang Hun;Yoon, Won Jae;Kim, Yongchan;Lee, Mooyeon;Yun, Seongjung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.205-212
    • /
    • 2013
  • The objective of this study was to investigate the feasibility of replacing a conventional plate fin-tube evaporator with a spiral fin-tube evaporator by comparing the performance of domestic refrigerator-freezers adopting either the plate fin-tube evaporator or spiral fin-tube evaporator. Experiments were conducted for the domestic refrigerator-freezers using either a 2-column and 15-row plate fin-tube evaporator or three spiral fin-tube evaporators with 11, 13, and 15 tube rows (N). The optimum refrigerant charge decreased with a decrease in the number of tube rows. The power consumptions of the domestic refrigerator-freezers using the spiral fin-tube evaporators with N = 11 and 13 were 2.8% and 1.5% lower than those using the plate fin-tube evaporator, respectively. In addition, the cooling capacity of the spiral fin-tube evaporator with N = 13 was 3%-7% higher than that of the plate fin-tube evaporator under the frosting condition. In a cooling speed test, all of the evaporators showed similar performances.

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube (초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석)

  • Lee, Dae-Won;Nguyen, Hoang Hai;So, Myeong-Ki;Nah, In-Wook;Park, Dong-Wha;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

Heat Transfer Analysis of EGR Cooler with Different Tube Shape (튜브형상에 따른 배기가스 재순환 냉각 장치 열전달 성능 평가)

  • Sohn, Chang-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.112-117
    • /
    • 2007
  • With the Euro-4 regulation coming into effect, the domestic car industry is forced to look for newer options to reduce NOX in the exhaust. EGR(Exhaust Gas Recirculation) Cooler is an effective method for the reduction of NOX form a diesel engine. High efficiency, low pressure loss and compactness are desirable features of an EGR Cooler. The cooling performance of EGR depends on the shape of tubes and the location of the entrance and exit. This paper reports the computational work conducted to estimate the performance of EGR cooler with three different cross section tubes and a triangular spiral tube. Three dimensional computation results show that the triangular tube is more effective than circular and rectangular tube. The most effective geometry is a triangular spiral tube with offset inlet and outlet locations.

An Experimental Investigation of Jet Impingement Cooling Using the Vortex Tube (보텍스튜브를 이용한 충돌냉각의 실험적 연구)

  • Shin, Woon-Chul;Kim, Chang-Soo;Bae, Shin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.8-15
    • /
    • 2007
  • The jet impingement cooling characteristics are investigated experimentally. The study is motivated by the potential application of local hot spot cooling by means of the vortex tube. The purposes of this research are to examine the effect of the nozzle-block spacing and flow rate. The results of jet through vortex tube is compared with ones of circular Jet. Flow visualization by the smoke-wire technique is also performed to investigate the flow structure. As the nozzle-block spacing is increased and flow rate decreased, the cooling effect of the Jet through the vortex tube decreases mere remarkably than that of the circular jet. So the cooling effect for the jet through the vortex tube is higher than that for the circular jet at $H/D{\leq}3$, $Q{\geq}10m^3/h$.