• Title/Summary/Keyword: 냉각기계

Search Result 1,057, Processing Time 0.029 seconds

Automotive Tire Pressure Sensors with Titanium Membrane (티타늄 박막을 이용한 자동차 타이어 압력센서)

  • Chae, Soo
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • In this work, mechanical characteristics of titanium diaphragm have been studied as a potential robust substrate and a diaphragm material for automotive tire pressure sensor. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on titanium diaphragm have been designed, fabricated and characterized. The fabrication process for micromachined titanium devices keeps the membrane and substrate being at the environment of 20 MPa pressure and $200^{\circ}C$ for a half hour and then subsequently cooled to $24^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated titanium film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the fabricated device is $9.45ppm\;kPa^{-1}$ with a net capacitance change of 0.18 pF over a range 0-210 kPa.

성막직전 기판 열처리가 롤투롤 스퍼터를 이용하여 성장시킨 터치 패널용 ITO 투명 전극의 특성 미치는 효과 연구

  • Kim, Dong-Ju;Kim, Bong-Seok;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.416-416
    • /
    • 2010
  • 본 연구에서는 저가격, 대면적화를 위한 롤투롤 스퍼터를 설계&개발하고, 성막직전 PET 기판의 열처리 유무를 통한 ITO 박막을 성막 시킨 저항막 방식의 터치 패널용 투명 전극에 대하여 전기적, 광학적, 구조적, 표면적 특성을 분석하였다. 롤투롤 스퍼터는 degassing챔버와 스퍼터 챔버가 한 시스템에 구성되었고, Degassing 챔버는 좌우측의 Rewinder/Unwinder 롤러에 의해 감고 풀어지는 PET기판의 수분 및 가스를 중앙부에 위치한 히터를 통해 제거하며, 수분 제거 후 스퍼터 챔버로 옮겨진 1250 mm폭의 PET기판을 Unwinder/Rewinder 롤러에 장착하며, Unwinder 롤러로부터 풀려진 PET 기판은 guide 롤러를 거쳐 cooling drum과의 물리적 접촉에 의해 PET 기판의 냉각이 일어나게 된다. ITO 캐소드 전에 장착된 할로겐 히터 상부로 기판이 지나가면서 열처리가 진행되고 열처리 후 두 개의 ITO 캐소드 상부를 지나면서 연속적으로 ITO 박막이 PET 기판에 성막 되게 된다. ITO 박막의 주요 성막 변수인 DC Power, Ar/$O_2$ 가스 유량비, 기판의 속도는 최적으로 고정하고, 성막 직전 기판의 열처리에 유무에 따른 ITO박막의 필름을 각각 고온 챔버에서 $140^{\circ}C{\times}90min$ 동안 열처리를 통한 내열성 테스트를 진행하여 ITO 필름의 특성 향상을 비교 분석하였다. 분석을 위해 전기적 특성은 four-point probe로 측정했고, 투과도는 Nippon Denshoku사(社)의 COH-300A를 이용해 가시광(550nm)에서 분석했고, FE-SEM으로 ITO박막 의 표면 상태를 분석하였다. 또한 Bending Tester(Z-100)를 이용하여 기계적 안정성을 분석하였다. 성막직전 PET 기판의 열처리를 하지 않은 ITO박막은 고온의 챔버 에서 $140^{\circ}C{\times}90min$ 동안 내열성 테스트 후 면저항이 511($\omega/\Box$)에서 630($\omega/\Box$)으로 높아졌으나, 성막직전 열처리를 통한 ITO 박막인 경우에는 465($\omega/\Box$)에서 448($\omega/\Box$)로 안정화 되었고, 투과율은 성막직전 열처리를 통해 1%향상되어 89%를 보였고, 유연성 또한 보다 우수한 특성을 보였다. 표면 조도는 평균 0.416 nm의 낮은 값을 보였다. 이는 PET 기판의 degassing 공정 중 충분히 제거되지 않은 가스나 불순물을 성막직전 열처리 공정으로 충분히 제거하여 깨끗한 PET 기판 상에 ITO 박막을 성막시키고, 열처리시 기판에 주어진 열에너지에 의해 보다 밀도가 높은 ITO 박막이 성장했기 때문으로 사료 된다.

  • PDF

Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging (직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향)

  • Shin, Jung-Ho;Ryu, Young-Joo;Kim, Byung-Ok;Ko, In-Yong;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.

Effect of Addition of Enzyme-Resistent Starch on Texture Characterstics of Corn Bread (효소 저항성 전분의 첨가가 옥수수빵의 텍스쳐 특성에 미치는 영향)

  • 조아라;안승요
    • Korean journal of food and cookery science
    • /
    • v.12 no.2
    • /
    • pp.207-213
    • /
    • 1996
  • Effects of replacement of corn starch with Amylomaize Vll starch and addition of enzyme-resistant starch on texture characteristics of com bread (CON) were investigated. Amylomaize-substituted corn bread (AMZ) was made by replacing corn starch with Amylomaize Vll starch. 15% (RSl5) and 30% (RS30) of butter, was replaced with enzyme-resistant starch (RS) from Amylomaife Vll starch, respectively. Textu,e describing terms were classified according to their physical properties. Result of sensory evaluation characteristics showed that the size of air cells increased as butter replacement level decreased and that hardness increased but springiness decreased as com starch was replaced with Amylomaize Vll starch. The results of Texture Profile Analysis with deformation of 30% and 50% showed that hardness inclosed but cohesiveness decreased as cooling time increased.

  • PDF

Microstructure and Mechanical Property of TiFe Compounds with Zr or Ce Prepared at Different Solidification Rates (TiFe금속간 화합물의 Zr과 Ce첨가와 냉각속도에 따른 응고 조직 변화 및 기계적 특성)

  • No, Hye-In;Choi, Chang-Wan;Yi, Seonghoon
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.21-25
    • /
    • 2019
  • Microstructural and corresponding hardness changes of TiFe compounds with Zr (0~6 at%) or Ce (0~3 at%) were studied using samples prepared at different solidification rates. In arc-melted (TiFe)-Zr samples, the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases formed in the TiFe matrix, while in the (TiFe)-Ce sample, the $CeO_2$ phase formed along the grain boundary of the TiFe matrix. As the Zr content was increased, the volume fractions of the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases increased, forming a network structure. Accordingly, the hardness values of the samples also increased. With a small addition of Ce of approximately 0.1 at%, the as-cast microstructure could be effectively refined, reducing the average grain boundary diameter from ${\sim}100{\mu}m$ to ${\sim}14{\mu}m$. In the rapidly solidified sample prepared through a melt-spinning method, the constituent phases were identical to those of the arc-melted samples while the grains were refined. The microstructural changes of TiFe alloys can affect the hydrogen storage ability as well as the mobility of the hydrogen atoms in the alloys.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

Effect of Cooling Conditions on Microstructures and Mechanical Properties in API X80 Linepipe Steels (API X80 라인파이프강의 미세조직과 기계적 특성에 미치는 냉각조건의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Bae, Jin-ho;Kim, Kisoo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.523-532
    • /
    • 2009
  • In this study, four API X80 linepipe steel specimens were fabricated with varying cooling rates and finish cooling temperatures, and their microstructures and crystallographic orientations were analyzed to investigate the effects of cooling conditions on their tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite, and secondary phases such as martensite and martensiteaustenite constituent. The volume fraction of secondary phases increased with increasing cooling rate, and the higher finish cooling temperature resulted in the reduction in volume fraction and grain size of secondary phases. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine acicular ferrites having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement of Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper shelf energy and the lowest energy transition temperature because it contained a large amount of fine secondary phases homogeneously distributed inside fine acicular ferrites, while its tensile properties well maintained.

Evaluation of Microstructure and Mechanical Properties according to Cooling Method after Hot Forging of High Manganese Steel Flange (고망간강 플랜지의 열간 단조 후 냉각방법에 따른 미세조직 및 기계적 특성 평가)

  • Minha Park;Gang Ho Lee;Byung Jun Kim;Byoungkoo Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.44-54
    • /
    • 2024
  • High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.

Clinical Experiences of Continuous Warm Blood Cardioplegia ; Valvular Heart Surgery (연속 온혈 심정지액의 임상경험 - 심장 판막 수술 환자 대상 -)

  • 이종국;박승일;조재민;원준호
    • Journal of Chest Surgery
    • /
    • v.31 no.4
    • /
    • pp.353-361
    • /
    • 1998
  • Hypothermia is widely acknowledged as fundamental component of myocardial protection during cardiac operations. Although it prolongs the period of ischemic arrest by reducing oxygen demands, hypothermia is associated with a number of major disadvantages, including its detrimental effects on enzymatic function, energy generation, and cellular integrity. The ideal way to rotect the heart is to electromechanically arrest it and perfus it with blood that is aerobic arrest. However alternative technique has been developed, based on the principles of electromechanical arrest and normothermic aerobic perfusion using continuous warm blood cardioplegia. To determine if continuous warm blood cardioplegia was beneficial in clinical practice during valvular surgery, we studied two groups of patients matched by numbers and clinical characteristics. Group included is 31 patients undergoing valvular surgery who received intermittent cold crystalloid cardioplegia. Group II included 30 patients undergoing valvular surgery who received continuous warm blood cardioplegia. Our results suggest that the heartbeat in 100% of patients treated with continuous warm blood cardioplegia converted to normal sinus rhythm spontaneously after the removal of the aortic cross-clamp, compared to only 31% of the cold cardioplegia group. After operation, pericardial closure rate was 90% area in the warm group, compared to 35% area in the cold group. 12 hours after the operation, the total amount of urine output in the warm group was greater than that in the cold group(2863${\pm}$127 ml versus 2257${\pm}$127 ml; p<0.05). After the operation, left diaphragmatic elevation developed in 55% of the cold group but in 0% of the warm group. CK-MB level in the warm group was significantly lower than cold group(2.28${\pm}$0.62 versus 9.96${\pm}$2.12; p<0.01) 1 hour after operation and CK-MB level in the warm group was significantly lower than cold group(1.80${\pm}$1.01 versus 6.00${\pm}$1.74; p<0.05) 12hours after operation. Continuous warm blood cardioplegia is at least as safe and effective as hypothermic technique in patients undergoing cardiac valvular surgery. Conceptually, this represents a new approach to the problem of maintaining myocardial preservation during cardiac operations.

  • PDF

Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water - (지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.128-137
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger by using the parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. 0247164, offered by Korean Intellectual property Office). The trial manufactures were made from Aloo-heat which was 600mm, 700mm length respectively, and It were welded to the end "U" type in order to direct flow of the underground water. The performance test was carried out under the condition of open space and room temperature with the change of flow rate of the underground water and air. The results are as follows. 1. The trial manufactures had convection heat value from 33 to 156 W/m2℃, and It was coincided with design assumption. 2. The amount of energy transfer was increased with the increment of the area of heat transfer, the air flow, the gap of temperature inlet & outlet the underground water and the air. 3. The heat value was 6,825W when the air flow was 6,000m3/h and the gap of temperature between inlet and outlet of the underground water was 6℃, and It dropped from 25.8℃ to 23.2℃(-2.6℃ difference). The convection heat value was 88.5W/m2℃. 4. The heat value was 2.625W when the air flow was 4,000m3/h and the gap of temperature between inlet and outlet the underground water was 2℃, and It dropped from 27℃ to 22.5℃(-4.5℃ difference). The convection heat value was 33.6W/m2℃. 5. Correlation values(R2) of the testing heat values of the trial manufacture type I, II, and III were 0.9141, 0.8935, and 0.9323 respectively, and correlation values(R2) of the amount of the air flow 6,000m3/h, 5,000m3/h, 4,000m3/h were 0.9513, 0.9414, and 0.9003 respectively.