• Title/Summary/Keyword: 냉각(cooling)

Search Result 3,151, Processing Time 0.037 seconds

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles (하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구)

  • Kwon, Hwabhin;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.403-408
    • /
    • 2016
  • Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.

A Study on Automatic Sensing Device for Water Leakage of Cooling Pipe at Blast Furnace by Use The Electronic System (전자제어 장치를 이용한 용광로 냉각관 누수 지동 감지장치 개발에 관한 연구)

  • Kang, Chang-Soo;Kang, Ki-Seong
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.25-30
    • /
    • 2009
  • The cooling water circulation pipes had been used to drop the temperature of refractory outside shell of blast furnace by cooling plate or stave type. They were attacked by surrounding CO gas and it was the cause that they were corroded and the water inflow in the refractory due to leakage of water. So, the life of refractory material was shorten and changed for the worse the conditions of blast furnace. The automatic sensing device for water leakage of cooling pipe was developed to check the position of trouble by use the micro-process system when cooling water leak and then CO gas will be inflowed into the cooling pipe at the leakage position. The inflowed CO gas will be detected in the micro-process system and delivered the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave the water leakage part immediately and then deliver the signal to main control room by use the micro-process system and wireless-radio relay station. This system will develop the working condition from manual system to unmanned auto alarm system.

An Investigation on Influence of Vibration Noise in Cooling Tower on Precision Equipments (산업용 냉각탑의 진동소음이 정밀장비에 미치는 영향에 대한 연구)

  • Lee, Jin-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.369-374
    • /
    • 2016
  • Cooling towers have been installed on rooftops or outside of buildings and widely applied to control the indoor temperature in residential areas and buildings. However, the noise and vibration resulting from their operation may cause problems in adjacent buildings. The purpose of this study is to measure the noise and vibration of an industrial cooling tower located adjacent to industrial plants and to investigate its influence on the surroundings according to an authorized evaluation standard. Further, in order to measure the effect of the vibration of the tower on the precision equipment inside the plant, an experiment is conducted to measure the vibration of the ground in the plant and the targeted precision equipment. The measurement results indicate that the noise in the cooling tower is 4 to 9 dB(A) higher than the maximum level defined in the standard of 68dB(A). The effect of the vibration of the tower on the precision equipment is comparatively minimal, because that in the supporting frame of the building is weaker than that on the floor where the precision equipment is located. The vibration of the floor on.

Comparison Between Direct- and Indirect-Cooling Core Catchers (직접냉각방식 및 간접냉각방식 Core Catcher의 성능비교)

  • Suh, Jung-Soo;Lee, Jong-Ho;Bae, Byung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1043-1047
    • /
    • 2012
  • The European nuclear design requirements, which should be satisfied by nuclear reactors in Europe, usually recommend a so-called core catcher, which is a molten core ex-vessel cooling facility, to manage a severe accident at a nuclear reactor. Two different types of core catcher concepts are compared to determine their abilities to manage severe accidents and cool core melts. The study reveals that direct cooling is better for cooling capacity and is convenient to construct, while indirect cooing is better for the management of a severe accident.

Preliminary Research of Regenerative Cooling for Small Scale Combustors (소형 연소기를 위한 재생냉각의 선행연구)

  • Jang, Dong-Wuk;Jo, Sung-Kwon;Cho, Hwang-Rae;Bang, Jeong-Seok;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.163-170
    • /
    • 2011
  • Applicability of regenerative cooling in 2,500 N-class bipropellant thruster using hydrogen peroxide and kerosene was considered for improvement performance and application in various missions. Calculation was performed by one dimensional approach using hydrogen peroxide as a coolant. In designed regenerative cooling thruster, heat flux at nozzle throat was estimated at 18 ~ 20 $MW/m^2$. Designed cooling channel width and height were 2.5 mm and 0.5 mm, respectively. Based on designed cooling channel configuration, flat plate model was manufactured and tested for estimation of pressure drop in cooling channel, and CFD analysis was compared with the test result. The maximum error between CFD analysis and experimental result was approximately 13% and average error was approximately 5%.

  • PDF

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

Performance Characteristics of Cooling Tower on Small Absorption Chiller (가정용 흡수식 냉온수기용 냉각탑의 성능특성)

  • Sarker M.M.A;Kim Eun-Pi;Jeong Seok-Kwon;Min Kyung-Hyun;Kim Jae-Dol;Yoon Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1145-1151
    • /
    • 2004
  • The experiment of thermal performance about cross flow type cooling tower was conducted in this study. Generally the ambient air condition can affect the thermal performance of cooling tower to improve or not. However it is hard to control the cooling water temperature that we want under bad air condition or during rainy season. In this paper, the effect of variables, which the ambient air have. especially wet-bulb temperature, are experimentally investigated for controlling the cooling water temperature more successfully. The result is that there is appropriate air flow rate in respective air condition to preserve the cooling performance in the cooling tower and the maximum air flow rate can't overcome the approach under bad air condition.

A Study on the Spray Cooling Characteristics of hot Flat Plates (고온평판의 분무냉각특성에 관한 연구)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

A Study on Direct Cooling and Indirect Cooling in Etching Process Cooling System (식각 공정용 냉각시스템에서의 직접 냉각 방식과 간접 냉각 방식에 관한 연구)

  • Jang, Kyungmin;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.100-103
    • /
    • 2018
  • Due to the plasma applied from the outside, which acts as an etchant during the etching process, considerable heat is transferred to the wafer and a separate cooling process is performed to effectively remove the heat after the process. In this case, a direct cooling method using a refrigerant is suitable for cooling through effective heat exchange. The direct cooling method using the refrigerant using the latent heat exchange is superior to the cooling method using the sensible heat exchange. Therefore, in this paper, AMESim is used to design a direct refrigerant cooling system using latent heat exchange simulator was built.The constructed simulator is reliable compared with the actual experimental results. It is expected that this simulator will help to design and search for optimal process conditions.

Structure design of regenerative cooling chamber of liquid rocket thrust chamber (액체로켓 연소기 재생냉각 챔버 구조설계)

  • Ryu, Chul-Sung;Choi, Hwan-Seok;Lee, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.109-116
    • /
    • 2005
  • Elastic-plastic structural analysis for regenerative cooling chamber of liquid rocket thrust chamber is performed. Uniaxial tension test is also conducted for the copper alloy in order to get material data necessary for the structure analysis. The results of uniaxial tension test reveal that copper alloy become ductile after brazing process and flow stress becomes lower as temperature becomes higher. As a result of structural analysis using the material data, the deformation of cooling channel is more increased by thermal load than by internal pressure of cooling fluid. Therefore, the results of analysis show that structural stability and cooling performance of combustion thrust chamber which is designed to endure mechanical load and minimized a channel thickness are improved by decreased thermal load as possible.