• Title/Summary/Keyword: 내화 모르타르

Search Result 47, Processing Time 0.02 seconds

Study on the High Temperature Properties of Fireproof Mortar Using Various Types of Fine Aggregate (잔골재 종류에 따른 내화피복용 모르타르의 고온 성상에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • High strength concrete has a structural advantage as well as superior usability and durability, so that its application in building is being steadily augmented. However, in the high temperature like in a fire, the high strength concrete has extreme danger named explosive spalling. It is known that the major cause of explosive spalling is water vapour pressure inside concrete. General solution for preventing concrete from spalling include applying fire protection coats to concrete in order to control the rising temperature of members in case of fire. The purpose of this study is to investigate the high temperature properties of fireproof mortar using organic fiber and various types of fine aggregate for fire protection covering material. The results showed that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. This causes the internal temperature to rise. As a results, it is found that a new fireproof mortar can be used in the fire protection covering material in high strength concrete.

A Study on the Fire Resistance Performance of Mortars Using Mesoporous Silica Nanoparticles(MSNs) and PVA Fibers (다공성 나노실리카 입자(MSNs)와 PVA섬유를 혼입한 모르타르의 내화성능에 관한 연구)

  • Cheonpyo Park;Jakyung Lee;Taehyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2023
  • In this study, in order to improve the fire resistance performance of structures in case of fire in buildings and structures, PVA fibers and the ZnO particles combined with mesoporous nano silica (MSNs) were mixed with cement mortar, and the specimen was exposed to a temperature range of 20~1100℃. Then the residual compressive strength and weight change rate were measured to determine whether the fire resistance performance changed. As a result of the study, it was found that mixing mesoporous nano silica and PVA fiber together did not contribute to improving the fire resistance performance of cement mortar. On the other hand, mixing 0.5% of mesoporous nano silica and 0.1 vol% of PVA fiber showed the best improvement test results, showing that it was advantageous for fire resistance performance.

Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도콘크리트용 내화피복재로 활용하기 위한 경량모르타르의 역학적 성상)

  • Lim, Seo-Hyung;Yoo, Suk-Hyung;Moon, Jong-Woog
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.8-13
    • /
    • 2011
  • High strength concrete is the occurrence of explosive spalling associated with high temperature such as a fire. The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. The purpose of this study is to investigate the mechanical properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the ratio of water to cement, the ratio of cement to perlite, contents of polypropylene fiber. As a result of this study, it has been found that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

Experimental evaluation of fire protection measures for the segment joint of an immersed tunnel (침매터널 세그먼트조인트의 내화 대책에 대한 실험적 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Kim, Heung-Youl;Jo, Bong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.177-197
    • /
    • 2011
  • In this study, a series of fire experiments under $HC_{inc}$ and ISO834 (duration of 4 hour) fire scenarios were carried out for three different types of fire protection measures for the segment joint to evaluate their applicabilities to an immersed tunnel. The experimental results revealed that an expansion joint installed to allow relative movements between concrete element ends in an segment joint is the most vulnerable to a severe fire. For the fire protection measure where the originally designed steel plates at an expansion joint arc replaced by fire-resistant boards, the experiments showed that they cannot achieve good fireproofing performance under both $HC_{inc}$ fire scenario and ISO834 (4 hour) fire scenarios since the installation of fire-resistant boards results in the reduction of the sprayed fire insulation thickness. On the other hand, the application of modified bent steel plates replacing the original steel plates was proved to be very successful in fireproofing of the expansion joint due to more sprayed materials filled in bent steel plate than in the original design concept as well as higher adhesion between the steel plate and the sprayed fire insulation layer.

An Experimental Study on The Fire Resistance Performance of Steel Encased Reinforcement Concrete and Steel Framed Mortar Beam with Loading Condition (철골 철근콘크리트 보 및 철골철망 모르타르조 보의 전열특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Yeo, In-Hwan;Kwon, Ki-Hyuck;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2012
  • This study evaluates the fire resisting capacity of the beam of the legal fire resistance construction, which establishes the Article 3 of the Regulations on Escape and Fire Resistance of Buildings. There are a total of five structures that we consider as legal fire resistance constructions, however, this study has a primary target of the reinforced concrete beam, and tests the fire-resistant performance depend on the covering depth of reinforce concrete. The results showed that it meets the three hours, the maximum statutory fire resistance time, if it was a load ratio of 0.5 and covering depth of 40 cm. Steel framed mortar beam is legal fire resistance structure that it was possessed three hours fire resistance performance, if it was a load ratio of 0.4 and covering depth of 60 mm.

An Experimental Study on the Optimized Mixture of Light-weight Aggregate Mortar for Plaster with Gypsum (석고를 혼입한 경량 모르타르 바름재의 최적배합 도출에 관한 실험적 연구)

  • Lee, Hyun-Woo;Ji, Suk-Won;Kim, Heung-Youl;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.371-372
    • /
    • 2009
  • This study is focused on deducing the optimized mixture of light-weight aggregate mortar for fire resistance plaster using gypsum, as it's a fundamental study for development of light-weight aggregate mortar.

  • PDF

Investigation on Fire Resistance of Mortar Made of Powder Type Sericite (분말형 견운모를 혼입한 모르타르의 내화성능 연구)

  • Park, Ji-Yeon;Kim, So-I;Kim, Seong-Ha;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • Powder type sericite has been actively researched in the area of chemistry and mineralogy in terms of waste recycling. It is a material that can be obtained relatively inexpensively with a low thermal conductivity like general mica, so in order to improve the thermal conductivity of the mortar, powder type sericite was used in this work. Compressive strengths of mortar before and after high temperature exposure were compared and evaluated to determine the fire resistance of mortar with powder type sericite. According to the experimental results, it was found that the compressive strength decreased when powder type sericite was replaced with cement, but the decrease in compressive strength with the increasing amount of powder type sericite was insignificant. When powder type sericite was incorporated, the thermal conductivity decreased, and the residual strengths of the mortar specimens which were heat treated at 600℃, 900℃, and 1,200℃ were higher than that of plain mortar. From the comprehensive evaluation of the experimental results, it can be concluded that the powder type sericite has the potential to be used as a refractory material for cement composites.

A Study on Fireproof Performance of Mortar using Oyster shell as Filler (굴 패각을 채움재로 사용한 모르타르의 내화성능에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.135-136
    • /
    • 2017
  • Oyster shell is produce by shucking process in oyster farming in southern coast of Korea. In average, about 6.7kg of oyster shell is produced as an industrial waste for 1kg of oyster flesh, and even only in last year, it is estimated that about 150,000 ton of oyster shell is produced. Oyster shell is light weighted and the strength characteristic of it is similar to send. So we produced mortar test piece using grounded oyster shell powder according to Filler and reviewed Fireproof Performance.

  • PDF

Study on high-Heated according Change of Fireproof Mortar Using Oyster Sell (굴 패각을 활용한 내화모르타르의 고온수열에 따른 성분변화에 관한 연구)

  • Hong, snag-hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.176-177
    • /
    • 2017
  • IN order to use it for high-temperature fire, Fireproof boards mainly composed of Ca and Mg used. Korea does not have a fireproof board for explosive high temperatuer fire in tunnel, and it is applying existing fireproof coating. However, when a high-temperature fire(1350℃)with explosion occurs, it can not sustain its strength and can not be destroyed to have fire resistance. Each year, more than 100,100tons of wastes are produced by using Ca as an oyster shell. In this study, we try to determine whether or not to reuse the heat-heated fireproof board.

  • PDF

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.