• Title/Summary/Keyword: 내화성능 실험

Search Result 268, Processing Time 0.034 seconds

A Study on Fire-Resistant Performance of Concrete Using Nano-Silica Perticles (나노 실리카 분말을 혼입한 콘크리트의 내화성능연구)

  • Jo Byung-Wan;Park Jong-Bin;Park Jong-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.247-254
    • /
    • 2005
  • Recently, since the advanced nano technology develops unique physical and chemical properties different from those of the conventional materials. Normal concretes mixed with nano - $SiO_2$ have been studied to improve the fire-resistance with high strength and lower heat conductivity. In this pilot study, the nano-particle contents in the specimens (${\Phi}100{\times}200 mm$) were 0, 2, 4, and $6\%$ by weight of cement, and fire-temperatures $200^{\circ}C$, $500^{\circ}C$, and $800^{\circ}C$ were considered. The results show that as the nano-particle contents increases, the weight loss of concrete gradually decreases, and the compressive strength after fire-attack increases effectively.

A Study on Fire Performance and Heat Transfer of HPC Column with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 전열 특성 및 화재 거동에 관한 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • In this study, experimental test and numerical analysis were conducted to investigate the heat transfer characteristics and fiber performance of high strength concrete. The fire characteristics of the high strength concrete that couldn't be obtained through the test due to specific requirements and restrictions were forecast using numerical analysis approach. The outcome from the numerical analysis and the test were compared to verify and improve the reliability of the analysis. A numerical analysis of 80 and 100 MPa high strength concrete cases were carried out to identify the heat transfer characteristics and fire behavior using software, ABACUS (V6.8) From the results of verification experiment, a 25~55% level of beam shrinkage reduction was observed compared to the concrete without Fiber-Cocktail, indicating the improved fire resistance performance, which appeared to be attributable to the function of Fiber-Cocktail that was able to control the heat transfer characteristics and ultimately result in enhancing the fire resistance performance.

삼성 조립식 주택 부재 및 공법의 성능향상에 관한 연구

  • 조동우;양관섭;이윤구;장재희;이세현
    • 월간 기계설비
    • /
    • s.47
    • /
    • pp.74-84
    • /
    • 1994
  • 본 연구원에서는 삼성건설에서 생산시공되고 있는 조립식주택 부재에 대하여 공업화주택 성능인정 기준과 관련된 항목중 단열, 차음, 내화성능등의 성능을 분석$\cdot$평가하여 PC조립식부재에 대한 기술자료를 마련하고자 하였다. 또한, 기존 조립식주택을 대상으로 주거환경과 직접적인 영향을 미치는 벽체 및 적합부의 단열 및 결로, 공간차음성능, 바닥충격음 차단성능, 급배수설비 소음 성능등에 대한 실물실험 및 현장실측조사를 통해 파악함으로써 조립식주택의 주건환경을 분석$\cdot$평가하였다. 각 항목별 성능에 대한 종합적인 분석결과, PC아파트의 기존의 현장타설 RC아파트는 주거성능 측면에서 별다른 차이를 보이지 않았으며, 단열성능 등 몇가지 요소에서 PC아파트가 상대적으로 우수한 것으로 분석$\cdot$평가되었다.

  • PDF

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

Study on the Fire Resistance of Light Weight Inorganic Polymer Concrete Panel Wall (Inorganic Polymer Concrete를 이용한 경량패널의 내화특성에 관한 실험적 연구)

  • Hwang, Ji-Soon;Kim, Woo-Jae;Kim, Dae-Hoi;Park, Dong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.205-206
    • /
    • 2011
  • Inorganic Polymer Concrete, a type of Alkali activated cement and concrete, is known for various excellent performances, especially for better performance in the area of high temperature heat resistance(thermal characteristic) than portland cement concrete.In this study, light weight concrete panel was manufactured using this Inorganic Polymer Concrete and then evaluated for fire resistance with a small-scale heating furnace. Since the result showed excellent fire resistance, it is considered usable for manufacturing fire resistant concrete panel wall.

  • PDF

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Evaluation of Adhesion Performance of High-Fireproofing Alumino-silicate Inorganic Mortar (알루미노 실리케이트계 고내화성 모르타르의 부착성능 평가)

  • Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2018
  • In modern society, a huge number of the buildings have been constructed with RC structure. RC structures have many structural instabilities due to earthquake, typhoon, construction fault, design phase errors. Therefore, many reinforcement methods are being implemented to solve this problem. In the reinforcement method, the organic epoxy adhesive used in the FRP reinforcing method is abruptly damaged when exposed to high temperature, which is directly connected to the fall of the reinforcing material. Therefore, the present study was conducted to develop inorganic refractory mortar with a certain level of adhesion ability to reduce the heat transferred to FRP reinforcement when exposed to high temperatures. As a result of the test, it showed high adhesion strength at room temperature condition with the inclusion of EVA resin, and showed no performance deterioration up to about $300^{\circ}C$ even under heating conditions. Also, it was confirmed that the backside temperature was lower as the thickness increased, and converged to a constant temperature of about $780^{\circ}C$ after 2 hours of heating.

A Study on Fire-proof Characteristics of Ultra High Strength Concrete Using Polyamide Fiber (폴리아미드섬유를 사용한 초고강도 콘크리트의 내화성능에 관한 연구)

  • Lee, Soo-Choul;Jeon, Joong-Kyu;Jeon, Chan-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2011
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increased. High performance concrete has cons of explosion in a fire. This explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using polypropylene-fiber and steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide fiber, proper fiber mixing volume by compressive strength areas of concrete more than 2.5kg in 160MPa. These amount of a compound can control the explosion.

Evaluation on Fire Test for the Concrete Filled Steel Tube Column -Fire Damage Evaluation on Steel Tube and Concrete after a Fire Test- (콘크리트충전 강관기둥의 내화실험에 대한 고찰 -재하가열실험후의 강관 및 콘크리트 화재손상평가를 중심으로-)

  • Park, Ki-Chang;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.759-767
    • /
    • 2000
  • In this study, the time dependent internal stress changes of a Concrete Filled Steel Tube(CFT) column during a fire test were quantitatively analyzed. The strain ratio of a CFT column on the different loads was measured by tensile strength tests in terms of yield strength, tensile strength average extensibility and elasticity modulus. To understand the internal material properties change of concrete in CFT column damaged due to a fire, the compressive strength and elastic modulus tests were measured on a core sample from the center of the steel tube after the fire test. The elastic modulus test measured the strain from the stress. To determine the fire temperature of the test material, a differential thermal analysis was done. From the tested result, the gained data were conducted and an analysis method was suggested. The purpose of this work is to suggest a basic data for structure regulation enactments of the internal fire design of CFT.

  • PDF