• Title/Summary/Keyword: 내화공법

Search Result 79, Processing Time 0.029 seconds

A study on the fire resistance properties of high strength concrete by incorporation of combined fiber (복합섬유 혼입에 의한 고강도콘크리트의 내화특성에 관한 연구)

  • Kim, Jeong-Jin;Kim, Kwang-Ki;Park, Soon-Jeon;Lee, Joo-Ho;Shin, Jae-Kyung;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.469-470
    • /
    • 2009
  • Recently, so that HSC can secure the fire resistance properties at the time of a fire in super tall building suggested method of combined fiber. Thus, there is the purpose to develop the high fireproof concrete which applied method of combined fiber which can satisfy flowability and the fire resistance properties of HSC for construction of the super tall building.

  • PDF

Performance Evaluation of Fire Resistance of High Strength Concrete by Incorporation of Combined Fiber (복합섬유 혼입에 따른 고강도콘크리트의 내화 성능 평가)

  • Shin, Jae-Kyung;Park, Jong-Ho;Jeong, Yong;Moon, Hyung-Jae;Kim, Jeong-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.423-424
    • /
    • 2010
  • This study purpose is to develop the high fireproof concrete which applied method of combined fiber mixed with polymer powder and organic fiber which can satisfy flowability and the fire resistance properties for construction of the super tall building. According to the results, in case of polymix it is effective to the reduction of internal temperature rise and spalling resistance so it as fire resistance that is similar to existing fiber cocktail.

  • PDF

New Fire Resistant Methods of RC Structures Using ECC (구조물의 내화공법에 대한 ECC 적용 가능성)

  • Kim, Jung-Hee;Chun, Byung-Il;Lee, Myung-Ho;Chung, Jae-Min;Ahn, Sang-Ro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.961-964
    • /
    • 2008
  • Fire safety is one of the important factors to be examined when applying ECC to actual concrete structures. The purpose of this study is to confirm whether the fire resistance of ECC satisfies the fire resistant requirements in order to use the fire protection material in concrete structures. Employed temperature curve are HC and RABT criterion, which are severe in various criterion of fire temperature in concrete structures. The test results show that ECC did not undergo any deterioration of fire resistance nor cause explosive spalling, which had been anticipated due to the presence of organic fibers. With comparison of current concrete and fire-resistance materials, the experimental results of ECC shows the better fire resistance performance than the other.

  • PDF

An Experimental Study on Setup of Classification System of Fire Resistance Wall Structure (벽체 내화성능 분류체계 설정을 위한 실험적 연구)

  • Choi, Dong-Ho;Kim, Dae-Hoi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.111-114
    • /
    • 2011
  • 건축물은 화재시 그 피해를 최소화하기 위해서 주요 구조부를 일정 수준의 내화구조로 시공되어야 한다. 현재 국내에서는 건축물 주요 구조부의 내화성능을 인정한 법정 내화구조를 규정하고 있으나 외국에 비하여 내화성능 및 구조의 구분없이 일률적으로 3시간의 내화성능을 규정하고 있으며, 이 경우도 규정된 후 상당한 시일이 경과되어 최근의 재료 및 공법 등을 적절히 수용하지 못하고 있는 실정이다. 이에 따라 현재 건축물 세부구조, 부위별로 내화성능을 세분화하여 규정할 필요가 있으며. 이를 위해 내화구조의 시험 자료를 근거로 한 경제적, 효율적 제도개선이 요구된다. 이에 본 연구에서는 국내의 법정내화구조로 규정된 벽체 구조를 대상으로 내화성능을 평가하여 각 구조별로 법정내화구조를 세분화한 기초자료를 제시하였다.

  • PDF

Fire Resistant Properties of the RC Columns Applying Various Splling Prevention Methods (폭렬방지공법 변화에 따른 RC 기둥부재의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun;Lee, Jong-Suk;Lee, Chan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.119-126
    • /
    • 2009
  • This study investigated the fire resistance of RC columns applying Fiber addition method, Fire board attaching method, and Fire proof sparying method. The results were summarized as following. The test showed that increase of fiber content, as expected, decreased the fluidity of fresh concrete, but for the types of fiber, the specimens containing nylon(NY) was favorable. The incline of fiber content also affected on the air content of concrete, which the specimens adding polypropylene(PP) fiber was the lowest, followed by a less decrease in polyvinyl alchhol(PVA) and then NY respectively. For the compressive strength at 28days, it was over 50MPa and showed slight increasing tendency by rising fiber contents. After the fire test completed, control concrete exhibited the severe demage, while the specimens containing more than 0.05vol.% of PP and NY was able to protect from spalling. In the case of splay, the partly spalling occurred at the all finishing material, however the RC columns were protected from spalling. For the methods attached with boards, all RC columns were protected except the dry attaching method. The reduced weight ratio was favorable because it was below 8 % except for plain concrete.

Properties of Fire Resistance in Tunnel Concrete According to the Changes of Heating Curve (온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Pei, Chang-Chun;Noh, Sang-Kyun;Lee, Chan-Young;Lee, Jong-Suk;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.705-708
    • /
    • 2008
  • To obtain tunnel concrete safety in case of fire, this study analyzed fire proof characteristics by fire proof method change, and the results are as follows. As a fire proof characteristics by RABT temperature heating curve, plain concrete experienced severe spalling by initial extremely high temperature. In view of fire proof method, in the cases of organic fiber mixing method and board method, spalling was prevented, and in the case of spray method, severe spalling of over 100mm depth occurred along with exposure of structural concrete including spray coat by heat stress, etc while metal lath, the stiffener, falls off. As for fire proof characteristics by RWS temperature heating curve, in case of organic fiber inclusion, concrete surface experienced fusion of within 5mm, while in the case of spray method, spray coat was severely spalled to a depth of over 100mm causing structural body concrete to expose its reinforcement, and also in the case of board method, board was fused by high temperature, causing structural body concrete be directly exposed to high temperature, which triggered overall fall-off phenomenon, so in such extraordinary high temperature heating condition, establishment of special fire proof measures is needed.

  • PDF

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Study on Work-Efficiency in feild of PFB(POSCO E&C Fire Board) for High Sterength Concrete Spalling Control (고강도 콘크리트 폭렬제어를 위한 PFB(POSCO E&C Fire Board) 공법의 현장 시공성에 관한 연구)

  • Kim, Woo-Jae;Park, Dong-Cheol;Yang, Wan-Hee;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.961-964
    • /
    • 2008
  • There are researches in progress on ensuring the safety of the high impact concrete in case of fire which is a current rising social problem and this research institute also developed PFB technology, the explosion preventing technology. PFB technology is to apply POSCO E&C Fire Board, a fireproof board, with an adhesive agent on the construction site, and this technology passed 3-hour fireproof test and this technology was proven from a previous research that the temperature of main root is maintained under $200^{\circ}C$. Therefore, tests on basic contents was performed in this research before the actual construction, with a full scale of wooden prototype to apply PFB technology to actual construction sites and the tests were done on the workability of fireproof board, the adhesive power, the resistance against imprint of wooden nail, the heat conductivity and etc. As the results of these tests, PFB technology was proven to have an excellent workability at a construction site and to be easy for processing and also, this technology was proven to have a great resisting power against imprint of wooden nail. Therefore, this research has confirmed that PFB technology has no problem to be applied on a construction site.

  • PDF

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns with Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.473-480
    • /
    • 2009
  • The 180 minutes fire test based on the standard curve of ISO-834 were conducted on three RC column specimens with different constant axial loading ratios to evaluate the fire performance of fiber cocktail (polypropylene+steel fiber) reinforced high strength concrete column. The columns were tested under three loading levels as 40%, 50%, and 61% of the design load. No explosive spalling has been observed and the original color of specimen surface has been changed to light pinkish grey. The maximum axial displacements of three specimens were 1.5~2.2 mm. There was no reduction in load bearing capacity of each specimen exposed to fire and no effect were observed on the fire performance within 61% of the design load. The tendencies of the results with loading, such as the temperature distribution of in concrete and the changes in temperature rise due to the water vaporization in concrete, are very similar to those without loading. The final temperatures of steel rebar after 180 minutes of fire test resulted in 491.4${^{\circ}C}$ for corner rebar, 329.0${^{\circ}C}$ for center rebar, and 409.8${^{\circ}C}$ for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 153.7${^{\circ}C}$ㅍ. The tendency of temperature rise in concrete and steel rebar changed after 30~50 minutes from the starting time of the fire test because the heat energy influx into corner rebar is larger than that into center rebar. The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Mock-up Test for Field Application of a Polylon Fiber Method (폴리론 화이버 공법의 현장적용을 위한 Mock-up Test)

  • Kwon, Hae-Won;Son, Ho-Jung;Jee, Suk-Won;Lee, Byeong-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.405-408
    • /
    • 2008
  • This study, as mock-up test for applying Polylon Fiber engineering method to the field, analyzed the fundamental characteristics and the fireproof characteristics of high strength concrete mixed with Polylon Fiber 0.05% and the results are summarized as followings. From the characteristic of the fresh concrete, both slump flow and air content were appeared to satisfy target range. And from the characteristic of hardened concrete, all compressive strengths according to the curing conditions were appeared to satisfy design standard strength of 60 MPa. From the fireproof characteristic, small scaling and spalling phenomenon were partially appeared on the surface part of specimens, but generally the excellent fireproof capacities were appeared. From the characteristic of temperature hysteresis, the highest temperature and the average temperature of reinforcing part after fire-resistant test for 3 hours were $531^{\circ}C$ and $405{\circ}C$, respectively and then satisfied fireproof standard of the Ministry of Land Transportation and Maritime Affairs.

  • PDF