• Title/Summary/Keyword: 내충격성능

Search Result 55, Processing Time 0.026 seconds

Evaluation of Impact resistance of UHPC Under Repeated Impact (반복충격을 받은 UHPC의 내충격성능 평가)

  • Jeong, Min-Seung;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.161-162
    • /
    • 2018
  • In this study, it evaluate the impact resistance of UHPC by repeated impact. smooth steel fiber and polyvinyl alcohol fiber were reinforced in UHPC respectively. Overall, the impact resistance of the specimens reinforced with 0.4vol.% PVA fiber was high, and the crater diameter was small in specimens using 13mm fiber. When 19 mm steel fiber is used, the fracture depth is small due to the increase of macro crack resistance compared with other specimens. On the other hand, in the case of the fracture area, it is considered that the use of the fiber of 13 mm causes an increase in the stress dispersion effect to occur small.

  • PDF

Performance evaluation methods for shock-proof of navy shipboard equipment (함정용 탑재장비의 내충격 성능평가 기술)

  • 정정훈;김병현;정태영
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.41-48
    • /
    • 1996
  • 함정용 탑재장비의 내충격 성능평가 기술분야에 대한 국내의 연구경험이 일천하여 미해군을 비롯한 선진군사강국의 기술구준에 도달하기 위해서는 해결해야 할 과제가 많이 남아있지만, 그 동안의 선박진동분야에서 축적한 구조동력학 분야의 국내기술을 바탕으로 접근해 간다면 그렇게 어려운 문제만은 아니다. 따라서 최근, 이 분야에 대한 국내의 활발한 연구활동을 시발점으로 하여 보다 심도있고 지속적인 연구를 수행한다면 한국해군 함정 및 탑재장비의 내충격 설계기술 자립을 머지 않아 이를 수 있으리라 생각한다. 이를 위해서 이 분야에 대한 국내연구진의 더 많은 노력과 한국해군의 적극적인 지원을 기대한다.

  • PDF

Improvement of the Strength Properties and Impact Resistance of the Cement Composite Materials by the use of Surface Modification of the Aramid Fibers (아라미드섬유의 표면개질에 의한 시멘트 복합재료의 강도특성 및 내충격성능의 향상효과)

  • Nam, Jeong-Soo;Yoo, Jae-Chul;Kim, Gyu-Yong;Kim, Hong-Seop;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.100-108
    • /
    • 2015
  • The purpose of this study is to evaluate the effect of improvement on the impact resistance and strength properties of cement composites by surface modification of aramid fiber. For aramid fiber reinforced cement composites, therefore, dispersion capability and the bonding efficiency between the fibers and the cement composite material need to be improved. It is possible by modifying surface properties to hydrophobic, it is considered that oiling agent ratio of 1.2 % and improvement of performance is in need to be investigated. In this study, short aramid fibers were mixed by different fiber length and oiling agent ratio. And improvement of strength properties and impact resistance performance of hybrid cement composites were evaluated under the influence of steel fiber. As a result, strength properties of aramid fiber reinforced cement composites are different by mixing ratio of fiber, oiling agent ratio and length of fiber. In case of cement composites which have same volume fraction and fiber length, tensile strength and flexural strength were improved with increase of the emulsions throughput of the fiber surface. The results of evaluation on the static strength properties had effects on impact resistance performance by high-velocity impact. And it was observed that the scabbing of rear was suppressed with increase of the oiling agent ratio.

함정 탑재 장비의 내충격 성능 평가

  • 정정훈
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 1998
  • 본 고에서는 미해군을 비롯한 유럽의 선진 군사 강국들이 현재 사용하고 있는 함정용 탑재 장비의 내충격 성능 평가 방법을 살펴보고, 동 기술 개발 분야에 대한 국내의 현황및 향후 기술개발에 대한 국내의 현황및 향후 기술개발 방향에 대해 개괄하고자 한다.

  • PDF

Flexural Performance Evaluation of HPFRCC with Aramid Fiber for Impact·Blast Resistance (내충격·방폭 성능 강화용 아라미드섬유 보강 HPFRCC의 휨성능 평가)

  • Jeon, Joong-Kyu;Kim, Sun-Gil;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.170-171
    • /
    • 2015
  • 본 논문에서는 내충격 방폭 성능 강화를 위해 개발된 유기계 단섬유 HPFRCC의 휨인성을 평가하였다. 유기계 단섬유 보강재는 아라미드섬유를 사용하였으며, 아라미드섬유 원사를 섬유가공 방법 중에 하나인 ATY(Air texturd yarn)공법을 통해 단섬유 형태로 제조하였다. 아라미드섬유 보강재를 혼입한 HPFRCC의 휨인성 시험을 통해 아라미드섬유의 내충격 방폭 성능 강화용 섬유보강재로의 성능을 평가하였다.

  • PDF

Evaluation on the Impact Resistance Performance of Fiber Reinforced Concrete by High Velocity Steel Projectile Test (고속 비상체의 충격시험에 의한 섬유보강콘크리트의 내충격 성능평가)

  • Nam, Jeong-Soo;Choi, Hyeong-Gil;Kim, Young-Sun;Park, Jong-Ho;Jeong, Yong;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.389-390
    • /
    • 2009
  • Recently, building structure damage and number of lives lost by bomb terror is increasing. Therefore, in this study, present basic data for development of impact resistance performance by evaluation on the impact resistance performance of fiber reinforced concrete by high velocity steel projectile test.

  • PDF

Impact Resistant Performance of Steel Short Fiber-reinforced Cement Based Composites (Steel단섬유보강 시멘트복합체의 내충격성능)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Choe, Gyeong-Cheol;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.254-255
    • /
    • 2017
  • The aim of this study is to investigate the impact resistant performance of steel short fiber-reinforced cement based composites (SFRCCs) containing 1.0, 1.5, 2.0 and 3.0% volume fraction of steel short fibers subjected to high velocity impact of steel projectile (the diameter of 19.05mm and the mass of 28.13g). The gunpowder impact facility was used for impact tests, and the impact velocity was from about 350 to 700m/s. The specimens were damaged in various failure modes, which are penetration, scabbing, and perforation. Comparing with Plain specimen, SFRCCs have superior capacity on the scabbing limit, and slightly bulged in the back side under the impact velocity of 700m/s. In addition, the impact resistant performance of SFRCCs improved with increase of steel short fiber volume ratio. The fibers play an important role in controlling the local damage of SFRCCs.

  • PDF

Investigation on the Applicability of Structures by Evaluating the Static Properties and the Impact Resistance Performance of Amorphous Metallic Fiber Reinforced Cement Composites (비정질 강섬유보강 시멘트복합체의 정역학특성 및 내충격성능 평가를 통한 구조물 적용 가능성 검토)

  • Kang, Il-Soo;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.79-80
    • /
    • 2017
  • This study examined the effect that the amorphous metallic fibers had on the static mechanical properties and the impact resistance of cement composites to those of hooked steel fibers. The hooked steel fiber exhibited pull-out from the matrix after the peak flexural stress was attained, while the amorphous metallic fiber was not pulled out from the matrix, but was instead cut off. In terms of impact resistance, the amorphous metallic fiber reinforced cement composite was found to be more effective at resisting cracking than the hooked steel fiber reinforced cement composite. Therefore, amorphous metallic fiber should be used in fiber reinforced cement composite materials, and for structural materials, and for protection panels.

  • PDF

A Study on the Impact Resistance of Concrete by Reinforcement Condition of Aramid Fiber (아라미드 섬유의 개질이 모르타르의 내충격 성능에 미치는 영향 검토)

  • Kim, Tae-Soo;Kim, Gyu-Yong;Jeon, Young-Seok;Nam, Jeong-Soo;Shin, Kyoung-Su;Jeon, Joong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.219-220
    • /
    • 2011
  • The research is for building safety by using fiber reinforced concrete against impact load. The aim of this study is to evaluation of Impact Resistance of mortar by Reinforcement Condition of Aramid Fiber(fiber length, fiber surface treatment, fiber contents, hyrid reinforcement with steel fiber). Thus, the results indicate that it can improve mix condition and impact resistance by fiber surface treatment.

  • PDF

Evaluation of Impact Resistance Performance of High Strength Concrete by Projectile Size and Compressive Strength (압축강도 및 비상체의 크기에 따른 고강도 콘크리트의 내충격 성능평가)

  • Kim, Hong-Sub;Kim, Gyu-Yong;Miyauchi, Hiroyukui;Nam, Jeong-Soo;Jeon, Young-Seok;Koo, Kyoung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.7-10
    • /
    • 2011
  • In this study, evaluation system of impact resistance performance is proposed. Compressive strength of concrete is 40, 60 and 80MPa. It evaluate impact resistance performance to use projectile 6, 7 and 8mm size. As a result, safety performance is more higher when the compressive strength is increased in. Compared with Hughes's formula, evaluation system of impact resistance performance is appropriated.

  • PDF