• Title/Summary/Keyword: 내진보강성능

Search Result 402, Processing Time 0.025 seconds

Decision Making of Seismic Performance Management for the Aged Road Facilities Based on Road-Network and Fragility Curve (취약도곡선을 이용한 도로망기반 노후도로시설물 내진성능관리 의사결정)

  • Kim, Dong-Joo;Choi, Ji-Hae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.94-101
    • /
    • 2021
  • According to the Facility Management System (FMS) operated by the Korea Authority of Land & Infrastructure Safety, it is expected that the number of aging facilities that have been in use for more than 30 years will increase rapidly to 13.9% in 2019 and 34.5% in 2929, and end up with a social problem. In addition, with the revision of "Common Application of Seismic Design Criteria" by the Ministry of Public Administration and Security in 2017, it is mandatory to re-evaluate all existing road facilities and if necessary seismic reinforcement should be done to minimize the magnitude of earthquake damage and perform normal road functions. The seismic performance management-decision support technology currently used in seismic performance management practice in Korea only determines the earthquake-resistance reinforcement priority based on the qualitative index value for the seismic performance of individual facilities. However with this practice, normal traffic functions cannot be guaranteed. A new seismic performance management decision support technology that can provide various judgment data required for decision making is needed to overcome these shortcomings and better perform seismic performance management from a road network perspective.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

Material Performance Evaluation of PolyUrea for Structural Seismic Retrofitting (구조물 내진 보강용 폴리우레아의 재료 성능 평가)

  • Cho, Chul-Min;Choi, Ji-Hun;Rhee, Seung-Hoon;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.131-139
    • /
    • 2017
  • Recently, earthquakes have frequently occurred near Korean peninsula. An experimental study is needed for developing a reinforcing method for seismic strengthening to apply to RC structures. Recently, PolyUrea (PU) as structural reinforcement materials has been receiving great interest from construction industry. The reinforcing effect of PU appeared to be excellent under blast and impact as well as earthquakes. In this study, Flexible Type PolyUrea (FTPU) developed in preceding studies was modified to develop Stiff Type PolyUrea (STPU) by varying the ratio of the components of prepolymer and hardener of FTPU. The material performance evaluation has been performed through hardening time, tensile strength and percent elongation test, pull-off test, and shore hardness test. The experimental results showed that STPU has higher tensile strength and lower elongation than FTPU. Therefore, STPU coating agent can be used for semi-permanent products. By using STPU with Fiber-Reinforced Polymer (FRP) on concrete columns, confinement effect can be enhanced to maximize seismic strength and ductility.

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

An Experimental Study of Seismic Retrofit on the Viaduct Bridge of Rail Transit (철도 고가교 기둥의 내진성능에 관한 실험적 연구)

  • Kim, Jinho;Shin, Hongyoung;Park, Yeonjun;Hur, Jinho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.616-622
    • /
    • 2012
  • Earthquake damage of viaduct bridge of railroad may give rise to social loss due to transport restrictions greater than cost of structural recovery. Therefore, viaduct bridge of railroad should have ensure adequate seismic performance. But, results of seismic performance evaluation, many of seismic retrofit was required. In this study, five scale models of columns were made and four of them were reinforced by HT-A(HyperTex & perforate Aluminum) which is improved than existing method. Testing the columns by constant axial load and cyclic lateral displacements, seismic performance of columns has been verified from the result of evaluating the stiffness, ductility and energy dissipation capacity.

Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab (바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Young Ju;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.247-255
    • /
    • 2004
  • An experimental program was undertaken to develop seismic retrofit methods of existing steel moment connections with floor slab for improved seismic performance. Five full-scale composite specimens were tested under cyclic loading. Conventional through-diaphragm connections [please check this; no search results were found for through-diaphragm connections] composed of square-tube column and H-beam were retrofitted by adding either a bottom-flange dogbone (RBS) or an improved welded horizontal stiffener at the beam bottom flange. The effectiveness of the proposed retrofit connections schemes was evaluated. The specimen retrofitted using the RBS concept at the bottom flange showed poor connection ductility. In contrast. specimens with the proposed horizontal stiffener details exhibited improved connection ductility.

Seismic Performance of a Non-Seismic Designed Pier Wall and Retrofit Concept (비내진 벽식 교각의 내진성능 및 보강개념)

  • Hoon, Lee-Jae;Ho, Choi-Young;Soon, Park-Kwang;Seok, Ju-Hyeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.87-98
    • /
    • 2009
  • It is well known that reinforcement details in the plastic hinge region of bridge piers give the most important effects on the seismic performance of bridges, from investigations of bridge failures in many earthquake events and in laboratory tests. Longitudinal reinforcement details give larger effects than lateral reinforcement details do. The lap-spliced longitudinal steel shows slip during earthquake events, which results in low ductility and inadequate seismic performance. However, before the issue of the earthquake design code, a considerable number of bridge piers were constructed with lap-spliced longitudinal steel in the plastic hinge region. Therefore, a large amount of research has been conducted on the seismic performance and retrofit of circular and rectangular shaped bridge columns with lap-spliced longitudinal steel. However, research on wall type piers is very limited. This paper investigates the seismic performance of a pier wall by a quasi-static test in the weak axis direction and proposes a retrofit method. From the test with variables being the longitudinal steel detail and the transverse steel amount, it is shown that the currently used definition of yield displacement is not adequate. Therefore a new definition of yield displacement for the ductility investigation for a pier wall is proposed. In addition, a retrofit method by steel plates and bolts is proposed to improve ductility, and test results show that slip of the longitudinal steel is prevented by up to a considerably large displacement.