• Title/Summary/Keyword: 내용기반 이미지검색

Search Result 245, Processing Time 0.025 seconds

Image Retrieval using Contents and Location of Multiple Region-of-Interest (다중 관심영역의 내용과 위치를 이용한 이미지 검색)

  • Lee, Jong-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.355-358
    • /
    • 2011
  • 본 논문에서는 이미지에서 사용자가 관심을 갖는 영역(ROI)의 내용을 나타내는 특성값과 영역의 위치를 함께 고려하여 이미지를 검색하는 방법을 제안한다. 제안한 방법은 검색 대상 이미지를 일정 크기의 블록으로 구분한 후 사용자가 선택한 다중 ROI와 가장 근접하는 특성을 가진 블록을 선택한다. 블록의 특성값은 MPEG-7의 도미넌트 컬러 기술자를 사용한다. 사용자가 선택한 블록의 특성값과 함께 블록의 위치를 측정한 후, 검색 대상 이미지의 블록들의 특성값 및 위치와 비교하여 유사도를 측정한다. 본 논문에서는 실험결과 제안한 방법이 전역 이미지 검색이나 동일한 위치의 블록만 비교하는 경우보다 다중 ROI의 내용과 위치를 함께 고려하는 방법이 다른 방법에 비해 우수한 성능을 나타냈다.

  • PDF

Regional Color Feature Analysis for Content-based Image Retrieval (내용기반 이미지 검색을 위한 영역별 색상차 분석)

  • 안재욱;문성빈
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1999.08a
    • /
    • pp.17-20
    • /
    • 1999
  • 내용기반 이미지 검색에서는 이미지의 하위 영역을 구분하는 방식에 대하여 다양한 접근이 이루어져 왔다. 그중 한 가지가 Stricker와 Dimai가 제안한, 이미지를 다섯개의 영역으로 나누고 그 가운데 주재 객체가 위치할 것을 가정하여 높은 가중치를 부여하는 방법인데, 본 연구에서는 이와 같은 가정이 타당할 것인가를 S.K. Chang의 PIM(Picture Information Measure) 엔트로피를 계산하여 검증하려 하였다. 실험결과 이미지의 중앙과 그 외부 영역 사이에는 유의미한 차이가 존재하는 것으로 나타났으며, 따라서 Stricker와 Dimai의 방식을 지지할 수 있을 것으로 결론 내릴 수 있다.

  • PDF

Efficient Image Search Technique Using Color and Shape Feature (색상과 모양 특징을 이용한 효율적인 이미지 검색기법)

  • 조범석;박영배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.163-165
    • /
    • 2000
  • 내용기반 이미지 검색을 위한 기존의 대부분의 기법들은 이미지 데이터에 효과적으로 적용할 수 있는 고차원의 색인구조를 고려하지 않았다. 이 연구에서는 이미지 데이터베이스에서 보다 효율적이며 정확도가 높은 검색결과를 기대할 수 있는 색상 특징 데이터 표현방법인 ECCV기법, 모양 특징 데이터 표현방법인 EPA기법을 소개한다. 또한 고차원 데이터에 대해서도 검색속도를 향상시킬 수 있는 새로운 다차원 공간 인덱스 구조인 XS-트리를 제안한다. 이 방법을 이용하면 특징표현단계에서는 차원의 수가 증가되어 저장에 필요한 공간을 많이 요구하지만 인덱싱 단계를 거치면 이미지 검색 속도가 향상되며 정확한 이미지를 검색 할 수 있는 장점이 있다.

  • PDF

Web Image Classification using Semantically Related Tags and Image Content (의미적 연관태그와 이미지 내용정보를 이용한 웹 이미지 분류)

  • Cho, Soo-Sun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • In this paper, we propose an image classification which combines semantic relations of tags with contents of images to improve the satisfaction of image retrieval on application domains as huge image sharing sites. To make good use of image retrieval or classification algorithms on huge image sharing sites as Flickr, they are applicable to real tagged Web images. To classify the Web images by 'bag of visual word' based image content, our algorithm includes training the category model by utilizing the preliminary retrieved images with semantically related tags as training data and classifying the test images based on PLSA. In the experimental results on the Flickr Web images, the proposed method produced the better precision and recall rates than those from the existing method using tag information.

Content-based Image Retrieval Using Multiple Filters (다중 필터를 이용한 내용기반 이미지 검색 기술)

  • 김상수;백성욱;조영기;조주상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.709-711
    • /
    • 2004
  • 이 논문의 목적은 기하급수적으로 늘어나고 있는 이미지 데이터의 효율적인 검색을 위해 텍스처의 특징을 추출하여 이미지를 검색하는 방법을 제시하고, 다중 필터를 이용한 이미지 검색 기술을 보여주는 것이다. 본 논문에서는 텍스처 이미지 분석에 다양하게 이용되고 있는 Gabor Filtering 기술을 이용하여 질의 이미지에 대한 최적 필터를 선택하는 과정과 선택된 필터를 적용하여 최적의 이미지를 검색하는 프로세스를 제시하고자 한다.

  • PDF

A Systematic Review on Concept-based Image Retrieval Research (체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.313-332
    • /
    • 2014
  • With the increased creation, distribution, and use of image in context of the development of digital technologies and internet, research endeavors have accumulated drastically. As two dominant aspects of image retrieval have been considered content-based and concept-based image retrieval, concept-based image retrieval has been focused in the field of Library and Information Science. This study aims to systematically review the accumulated research of image retrieval from the perspective of LIS field. In order to achieve the purpose of this study, two data sets were prepared: a total of 282 image retrieval research papers from Web of Science, and a total of 35 image retrieval research from DBpia in Kore for comparison. For data analysis, systematic review methodology was utilized with bibliographic analysis of individual research papers in the data sets. The findings of this study demonstrated that two sub-areas, image indexing and description and image needs and image behavior, were dominant. Among these sub-areas, the results indicated that there were emerging areas such as collective indexing, image retrieval in terms of multi-language and multi-culture environments, and affective indexing and use. For the user-centered image retrieval research, college and graduate students were found prominent user groups for research while specific user groups such as medical/health related users, artists, and museum users were found considerably. With the comparison with the distribution of sub-areas of image retrieval research in Korea, considerable similarities were found. The findings of this study expect to guide research directions and agenda for future.

Improved SIM Algorithm for Contents-based Image Retrieval (내용 기반 이미지 검색을 위한 개선된 SIM 방법)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-59
    • /
    • 2009
  • Contents-based image retrieval methods are in general more objective and effective than text-based image retrieval algorithms since they use color and texture in search and avoid annotating all images for search. SIM(Self-organizing Image browsing Map) is one of contents-based image retrieval algorithms that uses only browsable mapping results obtained by SOM(Self Organizing Map). However, SOM may have an error in selecting the right BMU in learning phase if there are similar nodes with distorted color information due to the intensity of light or objects' movements in the image. Such images may be mapped into other grouping nodes thus the search rate could be decreased by this effect. In this paper, we propose an improved SIM that uses HSV color model in extracting image features with color quantization. In order to avoid unexpected learning error mentioned above, our SOM consists of two layers. In learning phase, SOM layer 1 has the color feature vectors as input. After learning SOM Layer 1, the connection weights of this layer become the input of SOM Layer 2 and re-learning occurs. With this multi-layered SOM learning, we can avoid mapping errors among similar nodes of different color information. In search, we put the query image vector into SOM layer 2 and select nodes of SOM layer 1 that connects with chosen BMU of SOM layer 2. In experiment, we verified that the proposed SIM was better than the original SIM and avoid mapping error effectively.

  • PDF

Full-automatic high-level concept extraction for image using domain ontologies (온톨로지를 이용한 이미지의 고수준 의미 정보 자동 추출 기법)

  • Park Kyung-Wook;Lee Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.88-90
    • /
    • 2005
  • 최근 인터넷의 급속한 성장은 이미지와 같은 멀티미디어 정보의 급격한 증가를 가져왔다. 따라서 사용자로 하여금 원하는 이미지를 검색하는데 있어서 좀 더 효율적이고 정확한 검색 방법의 필요성이 대두되어 왔다. 일반적으로 이미지 검색 방법에는 키워드 기반 방식과 내용 기반 방식이 존재한다. 그러나 위 두 방법은 지금의 대용량 이미지 데이터베이스 검색에 있어서 여러 문제점들을 가지고 있다. 특히, 키워드 기반 방식을 보완하기 위해서 제안되어진 내용 기반 방식의 경우, 사람이 인식할 수 있는 의미 정보가 아닌 시각 정보만을 이용하기 때문에 시맨틱 갭(semantic gap) 문제가 발생하게 된다. 본 논문에서는 이미지 객체의 시각 정보들에 대한 중간 의미값으로 구성된 시각 정보 온톨로지와 동물에 대한 분류 정보를 표현하고 있는 동물 온톨로지를 구축하고, 이를 이용하여 이미지로부터 .고수준의 의미 정보를 완전 자동으로 추출하는 효율적인 방법을 제안한다.

  • PDF

A Semantic-based Video Retrieval System using Indexing Agent (인덱싱 에이전트를 이용한 의미기반 비디오 검색 시스템)

  • 이종희;이근왕
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.281-284
    • /
    • 2003
  • 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 제안한다.

  • PDF

A Design of Intelligent Web Image Retrival System using Texture and Color Information (질감과 칼라 정보를 이용한 지능적 웹 이미지 검색 시스템 설계)

  • 홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.61-63
    • /
    • 2001
  • 최근들어, 인터넷상의 E-business나 쇼핑몰사이트와 같은 웹 사이트에서 멀티미디어 정보를 많이 사용하고 있다. 멀티미디어 정보 중에서도 이미지 정보가 가장 많이 사용되고 있으며, 이는 사용자들이 가장 많이 접하는 정보이다. 기존의 이미지 검색 기법은 내용 기반 검색이나 키워드를 이용한 검색 방법을 지원하지만, 사용자의 의도를 적용하지는 못하고 있다. 본 논문에서는 웹에서 사용자가 이미지를 검색하고 접근하는 패턴을 이미지의 칼라와 질감을 특징으로 한 벡터를 기반으로 시스템에 학습 시키고 사용자의 검색 성향을 분석하여 시스템에 적용한다. 이미지 검색의 효율을 높이기 위하여 질감을 기반으로 비트 벡터 인덱스(bit vector index) 기법을 적용하며, 인덱스에 의한 이미지 자동 분류 기법을 제안한다. 또한 이미지 칼라의 정보를 영역별로 추출하여 칼라 부분매칭 검색을 가능하게 한다. 이러한 이미지 검색 시스템을 사용하는 사용자의 정보를 시스템에 학습시키고 학습된 결과를 이용해서 사용자가 검색 하고자 하는 이미지 정보에 편리성을 제공하고 검색의 효율성을 증대시킨다.

  • PDF